Skip to main content

Semiclassical Results for Ideal Fermion Systems. A Review

  • Conference paper
  • 948 Accesses

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 186))

Abstract

Ideal Fermion systems represent an issue of great recent interest. They consist of N-Fermion gases without interaction but subject to an exterior field or potential. In this paper we review recent studies of such systems in the following situations:

  • the low temprerature behavior of confined fermion gases in contact with an exterior reservoir

  • the action of a magnetic field on two-dimensional electronic devices

  • the transport and dissipation for time-dependent scatterers connected to several leads, known as “quantum pumps”.

The response of these different systems under the influence of the exterior potential or field is considered. In the first situation the response is calculated in terms of the “dynamical susceptibility” in the linear response framework, which yields a generalized Kubo formula. In the second situation the response is expressed by the magnetic susceptibility and the magnetization which are estimated semiclassically for various regimes of the temperature as compared with powers of the Planck constant. In the last situation the response is a measurable current estimated in an adiabatic framework.

All these results are contained by a series of papers by D. Robert and myself, and in recent works by Avron, Elgart, Graf and Sadun.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agam O., J Phys. I (France) 4, 697–730, (1994).

    Article  Google Scholar 

  2. Avron J., Elgart A., Graf G.M., Sadun L. Schnee K., Adiabatic charge pumping in open quantum systems, Comm. Pre Appl. Math., 57, 528, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. Avron J., Elgart A., Graf G.M., Sadun L. Transport and Dissipation in “Quantum Pumps”, J. Stat. Phys. 116, 425–473, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  4. Avron J., Gutkin B., Oaknin D., Adiabatic Swimming in an Ideal Quantum Gas, Phys. Rev. Lett., 96, 130602, (2006).

    Article  Google Scholar 

  5. Brack M., Murthy M.V., Harmonically trapped fermion gases: exact and asymptotic results in arbitrary dimensions, J. Phys. A: Math. Gen. 36, 1111–1133, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  6. Bruun G.M., Clark C.W., Ideal gases in time-dependent traps, Phys. Rev. A, 61, 061601(R), (2000).

    Article  Google Scholar 

  7. Büttiker M., Prêtre A., Thomas H., Phys. Rev. Lett. 70, 4114, (1993).

    Article  Google Scholar 

  8. Butts D.A., Rokhsar D.S., Trapped Fermi Gases, Phys. Rev. A, 55, 4346–4350, (1997).

    Article  Google Scholar 

  9. Combescure M., Robert D., Rigorous semiclassical results for the magnetic response of an electron gas, Rev. Math. Phys., 13, 1055–1073, (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. Combescure M., Robert D., Semiclassical results in the linear response theory, Ann. Phys., 305, 45–59, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  11. Eckhardt B., Eigenvalue Statistics in Quantum Ideal Gases, arXiv: chao-dyn/ 9809005, (1998).

    Google Scholar 

  12. Fock V., Z. Physik, 47, 446–450, (1928).

    Article  Google Scholar 

  13. Gat O., Avron J., Semiclassical Analysis and the Magnetization of the Hofstadter Model, Phys. Rev. Lett. 91, 186801, (2003).

    Article  Google Scholar 

  14. Gat O., Avron J., Magnetic fingerprints of fractal spectra and the duality of Hofstadter models, New J. Phys., 5, 44.1–44.8, (2003).

    Article  Google Scholar 

  15. Gleisberg F., Wonneberger W., Noninteracting fermions in a one-dimensional harmonic atom trap: Exact one-particle properties at zero temperature, Phys. Rev. A 62, 063602, (2000).

    Article  Google Scholar 

  16. Helffer B., Sjöstrand J., On diamagnetism and the de Haas-Van Alphen effect, Ann. I. H.P., Phys. Théor., 52, 303–352, (1990).

    MATH  Google Scholar 

  17. Kubasiak A., Korbicz J., Zakrzewski J., Lewenstein M., Fermi-Dirac statistics and the number theory, Europhysics Letters, (2005).

    Google Scholar 

  18. Landau L., Z. Physik, 64, 629, (1930).

    Article  Google Scholar 

  19. Leboeuf P., Monastra A., Quantum thermodynamic fluctuations of a chaotic Fermigas model, Nuclear Physics A, 724, 69–84, (2003).

    Article  MATH  Google Scholar 

  20. Lert P.W., Weare J.H., Static semiclassical response of a bounded electron gas. 1, J. Chem. Phys., 68, 2221–2227, (1978).

    Article  Google Scholar 

  21. Levy L.P., Reich D.H., Pfeiffer L., West K., Physica B 189, 204, (1993).

    Article  Google Scholar 

  22. Li M., Yan Z., Chen J., Chen L., Chen C., Thermodynamic properties of an ideal Fermi gas in an external potential with U=br t in any dimensional space, Phys. Rev. A 58, 1445–1449, (1998).

    Article  Google Scholar 

  23. Molinari V., Sumini M., Rocchi F., Fermion gases in magnetic fields: a semiclassical treatment, Eur. Phys. J. D, 12, 211–217, (2000).

    Article  Google Scholar 

  24. Molinari V., Rocchi F., Sumini M., Kinetic Description of Rotating Gases in External Magnetic Fields in the Framework of the Thomas-Fermi-Dirac Approach, Transport Theory and Stat. Phys., 32, 607–621, (2003).

    Article  MATH  Google Scholar 

  25. Peierls R.E., Z. Physik, 80, 763–791, (1933).

    Article  MATH  Google Scholar 

  26. Pezzè L., Pitaevskii L., Smerzi A., Stringari S., Insulating Behaviour of a Trapped Ideal fermi Gas, Phys. Rev. Lett. 93, 120401, (2004).

    Article  Google Scholar 

  27. Quang D.N., Tung N.H., Semiclassical approach to the density of states of the disordered electron gas in a quantum wire, Phys. Rev. B 60, 13648–136358, (1999).

    Article  Google Scholar 

  28. Richter K., Ullmo D., Jalabert R., Orbital magnetism in the ballistic regime: geometrical effects, Phys. Rep. 276, 1–83, (1996).

    Article  Google Scholar 

  29. Salasnich L., Ideal quantum gases in D-dimensional space and power-law potentials, Journ. Math. Phys., 41, 8016–8024, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  30. Switkes M., Marcus C.M., Campman K., Gossard A.G., Science, 283, 1907, (1999).

    Article  Google Scholar 

  31. Tran M.N.,Exact ground-state number fluctuations of trapped ideal and interacting fermions, J. Phys. A: Math. Gen. 36, 961–973, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  32. Tran M.N., Murthy M.V., Bhaduri R.K., Ground-state fluctuations in finite Fermi systems, Phys. Rev. E, 63 031105, (2001).

    Article  Google Scholar 

  33. van Faassen E., Dielectric response of a nondegenerate electron gas in semiconductor nancorystallites, Phys. Rev. B, 58, 15729–15735, (1998).

    Article  Google Scholar 

  34. van Zyl B.P., Analytical expression for the first-order density matrix of a d-dimensional harmonically confined Fermi gas at finite temperature, Phys. Rev. A, 68, 033601, (2003).

    Article  Google Scholar 

  35. Yajima K., Existence of solutions for Schrödinger evolution equations, Commun. Math. Phys., 110, 415–426, (1987).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Combescure, M. (2008). Semiclassical Results for Ideal Fermion Systems. A Review. In: Janas, J., Kurasov, P., Naboko, S., Laptev, A., Stolz, G. (eds) Methods of Spectral Analysis in Mathematical Physics. Operator Theory: Advances and Applications, vol 186. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8755-6_4

Download citation

Publish with us

Policies and ethics