Balanced Bilinear Forms for Corings

  • M. Beattie
  • D. Bulacu
  • Ş. Raianu
Conference paper
Part of the Trends in Mathematics book series (TM)


We review the role that balanced bilinear forms play in the definitions of properties of corings and suggest a definition for a coring to be symmetric.


Commutative Ring Bijective Correspondence Injective Morphism Convolution Multiplication Balance Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Brzeziński, L. Kadison and R. Wisbauer, On coseparable and biseparable corings, In: Hopf algebras in non-commutative geometry and physics, S. Caenepeel, F. Van Oystaeyen (eds.), Lecture Notes in Pure and Applied Mathematics 239, Marcel Dekker, New York, 2004, p. 71–88 (arXiv:math.RA/0208122).Google Scholar
  2. [2]
    T. Brzeziński and R. Wisbauer, Corings and Comodules, London Math. Soc. Lecture Note Series 309, Cambridge University Press, 2003.Google Scholar
  3. [3]
    S. Caenepeel, G. Militaru and S. Zhu, Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations, LNM 1787, Springer Berlin-Heidelberg, 2002.Google Scholar
  4. [4]
    F. Castaño Iglesias, S. DĂscĂlescu and C. NĂstĂsescu, Symmetric coalgebras, J. Algebra 279 (2004), 326–344.CrossRefMathSciNetzbMATHGoogle Scholar
  5. [5]
    S. DĂscĂlescu, C. NĂstĂsescu and Ş. Raianu, Hopf algebras: an introduction, Marcel Dekker, Pure and Applied Mathematics 235, 2001.Google Scholar
  6. [6]
    J. Gómez-Torrecillas and A. Louly, Coseparable corings, Communications in Algebra 31 (2003), 4455–4471.CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7]
    M. Iovanov and J. Vercruysse, CoFrobenius corings and adjoint functors, J. Pure Appl. Alg., to appear. (arXiv:math.RA/0610853)Google Scholar
  8. [8]
    B.I. Lin, Semiperfect coalgebras, J. Algebra 49 (1977), 357–373.CrossRefMathSciNetzbMATHGoogle Scholar
  9. [9]
    M.E. Sweedler, The predual theorem to the Jacobson-Bourbaki theorem, Transactions of the Amer. Math. Soc. 213 (1975), 391–406.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • M. Beattie
    • 1
  • D. Bulacu
    • 2
  • Ş. Raianu
    • 3
  1. 1.Department of Mathematics and Computer ScienceMount Allison UniversitySackvilleCanada
  2. 2.Faculty of Mathematics and InformaticsUniversity of BucharestBucharest 1Romania
  3. 3.Mathematics DepartmentCalifornia State University Dominguez HillsCarsonUSA

Personalised recommendations