Dual Algebras of Some Semisimple Finite-dimensional Hopf Algebras

  • V. A. Artamonov
  • I. A. Chubarov
Part of the Trends in Mathematics book series (TM)


In this paper we establish properties of dual Hopf algebras for two series of finite-dimensional semisimple Hopf algebras. It is shown none of dual algebra belong to this class.


Normal Subgroup Irreducible Representation Hopf Algebra Tensor Category Direct Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Artamonov V.A. On semisimple finite dimensional Hopf algebras, Math. Sbornik (to appear).Google Scholar
  2. [AS]
    Artamonov V.A., Slovokhotov Yu.L. Group theory and their applications in physics, chemistry and crystallography, Publishing center “Academia”, Moscow, 2005.Google Scholar
  3. [B]
    Bourbaki N., Algebra, Ch. IX. Paris, Hermann.Google Scholar
  4. [BZ]
    Bahturin Y.A., Zaicev M.V., Group gradings on associative algebras, J. Algebra, 241(2001), 677–698.MATHCrossRefMathSciNetGoogle Scholar
  5. [CR]
    Curtis Ch.W., Reiner I. Representation theory of finite groups and associative algebras. Interscience Publ., Witney & Sons, New York, London, 1962.MATHGoogle Scholar
  6. [JHLMYYZ]
    Jiang-Hua Lu, Min Yanm, Youngchang Zhu, Quasi-triangular structure on Hopf algebras with positive bases. Contemp. Math., 267(2000), 339–356.Google Scholar
  7. [H]
    Huppert B., Character theory of finite groups, de Gruyter Expositions in Mathematics 25, 1998.Google Scholar
  8. [KP]
    Kac, G., Paljutkin, V., Finite ring groups, Trudy Moscow Math. Obschestva, 15 (1966), 224–261.MathSciNetGoogle Scholar
  9. [LR]
    Larson, R., Radford, D., Finite-dimensional cosemisimple Hopf algebras in characteristic zero are semisimple. J. Algebra, 117(1988), 267–289.MATHCrossRefMathSciNetGoogle Scholar
  10. [M]
    Montgomery, S., Hopf Algebras and Their Actions on Rings, Regional Conf. Ser. Math. Amer. Math. Soc., Providence RI, 1993.Google Scholar
  11. [M1]
    Montgomery S., Classifying finite-dimensional semisimple Hopf algebras, Contemp. Math., 229(1998), 265–279.Google Scholar
  12. [N1]
    Natale S., On group theoretical algebras and exact factorizations of finite groups, J. Algebra, 270 (2003), 190–211.CrossRefMathSciNetGoogle Scholar
  13. [N2]
    Natale S., Semisolvability of semisimple Hopf algebras of low dimension, Memoirs of AMS vol. 186, 2007.Google Scholar
  14. [NZ]
    Nichols W., Zoeller M., A Hopf algebra freeness theorem, Amer. J. Math., 111(1989), 381–385.MATHCrossRefMathSciNetGoogle Scholar
  15. [OM]
    O’Meara O.T., Symplectic groups, Providence RI, Amer. Math. Soc., 1978.Google Scholar
  16. [P]
    Pierce, R.S., Associative algebras, Springer-Verlag, New York, Heidelberg, Berlin, 1982.MATHGoogle Scholar
  17. [S]
    Schneider H.-J., Lectures on Hopf algebras, Universidad de Cordoba, Trabajos de Matematica, N 31/95, Cordoba (Argentina), 1995.Google Scholar
  18. [Se]
    Seitz G.M., Finite groups having only one irreducible representation of degree greater than one. Proc. Amer. Math. Soc. 19(1968), 459–461.MATHCrossRefMathSciNetGoogle Scholar
  19. [T]
    Tambara D., Representations of tensor categories with fusion rules of self-duality for finite abelian groups, Israel J. Math., 118(2000), 29–60.MATHCrossRefMathSciNetGoogle Scholar
  20. [TY]
    Tambara D., Yamagami S., Tensor categories with fusion rules of self-duality for finite abelian groups, J.Algebra 209(1998), 692–707.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • V. A. Artamonov
    • 1
  • I. A. Chubarov
    • 1
  1. 1.Department of Algebra Faculty of Mechanics and MathematicsMoscow State UniversityMoscow

Personalised recommendations