Advertisement

On Some Injective Modules In σ[M]

  • A. Ç Özcan
  • D. Keskin Tütüncü
  • M. F. Yousif
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper, we study the notions (strongly) soc-injective, (strongly) simple-injective and (strongly) mininjective modules in σ[M]. For any module N in σ[M], N is strongly mininjective in σ[M] if and only if it is strongly simple-injective in σ[M]. A module M is locally Noetherian if and only if every strongly simple-injective module in σ[M] is strongly soc-injective. We also characterize Noetherian QF-modules.

Keywords

Direct Summand Simple Module Projective Module Injective Module Natural Epimorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Amin I., Yousif M.F., Zeyada N. (2005) Soc-injective rings and modules, Comm. Alg. 33, 4229–4250.CrossRefMathSciNetMATHGoogle Scholar
  2. [2]
    Amin I., Fathi Y., Yousif M.F. (2008) Strongly simple-injective rings and modules, Alg. Coll. 15(1): 135–144.MathSciNetMATHGoogle Scholar
  3. [3]
    Camillo V., Yousif M.F. (1991) CS-modules with acc or dcc, Comm. Algebra, 19(2): 655–662.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Cartan H., Eilenberg S. (1956) Homological Algebra, Princeton: Princeton University Press.MATHGoogle Scholar
  5. [5]
    Çelik C., Harmancı A. and Smith P.F. (1995) A generalization of CS-modules, Comm. Alg. 23: 5445–5460.CrossRefMATHGoogle Scholar
  6. [6]
    Dung N.V., Huynh D.V., Smith P.F., Wisbauer R. (1994), Extending Modules Pitman RN Mathematics 313, Longman, Harlow.Google Scholar
  7. [7]
    Harada M. (1982) On Modules with Extending Properties, Osaka J. Math., 19: 203–215.MathSciNetMATHGoogle Scholar
  8. [8]
    Mohamed S.H., Müller B.J. (1990) Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge.MATHGoogle Scholar
  9. [9]
    Wisbauer R. (1991) Foundations of Module and Ring Theory. Gordon and Breach, Reading.MATHGoogle Scholar
  10. [10]
    Wisbauer R., Yousif M.F.; Zhou Y. (2002) Ikeda-Nakayama Modules, Contributions to Algebra and Geometry, 43(1): 111–119.MathSciNetMATHGoogle Scholar
  11. [11]
    Yousif M.F., Zhou Y. (2002) Semiregular, semiperfect and perfect rings relative to an ideal, Rocky Mountain J. Math., 32(4):1651–1671CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • A. Ç Özcan
    • 1
  • D. Keskin Tütüncü
    • 1
  • M. F. Yousif
    • 2
  1. 1.Department of MathematicsHacettepe UniversityBeytepe AnkaraTurkey
  2. 2.Department of MathematicsThe Ohio State UniversityLimaUSA

Personalised recommendations