On Some Injective Modules In σ[M]

  • A. Ç Özcan
  • D. Keskin Tütüncü
  • M. F. Yousif
Conference paper
Part of the Trends in Mathematics book series (TM)


In this paper, we study the notions (strongly) soc-injective, (strongly) simple-injective and (strongly) mininjective modules in σ[M]. For any module N in σ[M], N is strongly mininjective in σ[M] if and only if it is strongly simple-injective in σ[M]. A module M is locally Noetherian if and only if every strongly simple-injective module in σ[M] is strongly soc-injective. We also characterize Noetherian QF-modules.


Direct Summand Simple Module Projective Module Injective Module Natural Epimorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Amin I., Yousif M.F., Zeyada N. (2005) Soc-injective rings and modules, Comm. Alg. 33, 4229–4250.CrossRefMathSciNetzbMATHGoogle Scholar
  2. [2]
    Amin I., Fathi Y., Yousif M.F. (2008) Strongly simple-injective rings and modules, Alg. Coll. 15(1): 135–144.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Camillo V., Yousif M.F. (1991) CS-modules with acc or dcc, Comm. Algebra, 19(2): 655–662.CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    Cartan H., Eilenberg S. (1956) Homological Algebra, Princeton: Princeton University Press.zbMATHGoogle Scholar
  5. [5]
    Çelik C., Harmancı A. and Smith P.F. (1995) A generalization of CS-modules, Comm. Alg. 23: 5445–5460.CrossRefzbMATHGoogle Scholar
  6. [6]
    Dung N.V., Huynh D.V., Smith P.F., Wisbauer R. (1994), Extending Modules Pitman RN Mathematics 313, Longman, Harlow.Google Scholar
  7. [7]
    Harada M. (1982) On Modules with Extending Properties, Osaka J. Math., 19: 203–215.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Mohamed S.H., Müller B.J. (1990) Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge.zbMATHGoogle Scholar
  9. [9]
    Wisbauer R. (1991) Foundations of Module and Ring Theory. Gordon and Breach, Reading.zbMATHGoogle Scholar
  10. [10]
    Wisbauer R., Yousif M.F.; Zhou Y. (2002) Ikeda-Nakayama Modules, Contributions to Algebra and Geometry, 43(1): 111–119.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Yousif M.F., Zhou Y. (2002) Semiregular, semiperfect and perfect rings relative to an ideal, Rocky Mountain J. Math., 32(4):1651–1671CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • A. Ç Özcan
    • 1
  • D. Keskin Tütüncü
    • 1
  • M. F. Yousif
    • 2
  1. 1.Department of MathematicsHacettepe UniversityBeytepe AnkaraTurkey
  2. 2.Department of MathematicsThe Ohio State UniversityLimaUSA

Personalised recommendations