Corings with Exact Rational Functors and Injective Objects

  • L. El Kaoutit
  • J. Gómez-Torrecillas
Conference paper
Part of the Trends in Mathematics book series (TM)


We describe how some aspects of abstract localization on module categories have applications to the study of injective comodules over some special types of corings. We specialize the general results to the case of Doi-Koppinen modules, generalizing previous results in this setting.


Full Subcategory Local Unit Forgetful Functor Smash Product Exact Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.D. Abrams, Morita equivalence for rings with local units, Comm. Algebra 11 (1983), 801–837.CrossRefMathSciNetzbMATHGoogle Scholar
  2. [2]
    J.Y. Abuhlail, Rational modules for corings, Comm. Algebra 31 (2003), no. 12, 5793–5840.CrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    J.Y. Abuhlail, J. Gómez-Torrecillas, and F.J. Lobillo, Duality and rational modules in Hopf algebras over commutative rings, J. Algebra 240 (2001), 165–184.CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    T. Brzeziński, A note on coring extensions, Ann. Univ. Ferrara, Sez. VII, Sc. Mat. LI(III) (2005), 15–27.Google Scholar
  5. [5]
    T. Brzeziński and R. Wisbauer, Corings and comodules, LMS, vol. 309, Cambridge University Press, 2003.Google Scholar
  6. [6]
    T. Brzeziński, The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties, Alg. Rep. Theory 5 (2002), 389–410.CrossRefzbMATHGoogle Scholar
  7. [7]
    T. Brzeziński and S. Majid, Coalgebra bundles, Comm. Math. Phys. 191 (1998), 467–492.CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    C. Cai and H. Chen, Coactions, smash product, and Hopf modules, J. Algebra 167 (1994), 85–99.CrossRefMathSciNetzbMATHGoogle Scholar
  9. [9]
    S. Dăscălescu, C. Năstăsescu, A. del Rio, and F. van Oystaeyen, Gradings of finite support. Applications to injective objects, J. Pure Appl. Algebra 107 (1996), 193–206.CrossRefMathSciNetzbMATHGoogle Scholar
  10. [10]
    S. Dăscălescu, C. Năstăsescu, and B. Torrecillas, Co-Frobenius Hopf algebras: Integrals, Doi-Koppinen modules and injective objects, J. Algebra 220 (1999), 542–560.CrossRefMathSciNetzbMATHGoogle Scholar
  11. [11]
    Y. Doi, Unifying Hopf modules, J. Algebra. 153 (1992), 373–385.CrossRefMathSciNetzbMATHGoogle Scholar
  12. [12]
    L. El Kaoutit, J. Gómez-Torrecillas, and F.J. Lobillo, Semisimple corings, Algebra Colloq. 11 (2004), 427–442.MathSciNetzbMATHGoogle Scholar
  13. [13]
    C. Faith, Algebra: rings, modules and categories, I, Grundlehren Math. Wiss., 190, Springer, New York, 1973.Google Scholar
  14. [14]
    P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.MathSciNetzbMATHGoogle Scholar
  15. [15]
    J. Gómez-Torrecillas, Coalgebras and comodules over commutative rings, Rev. Roumaine Math. Pures Appl. 43 (1998), no. 5–6, 591–603.MathSciNetzbMATHGoogle Scholar
  16. [16]
    J. Gómez-Torrecillas, Separable functors in corings, Int. J. Math. Math. Sci. 30 (2002), no. 4, 203–225.CrossRefMathSciNetzbMATHGoogle Scholar
  17. [17]
    J. Gómez-Torrecillas and C. Năstăsescu, Quasi-co-Fronenius coalgebras, J. Algebra, 174 (1995), 909–923.CrossRefMathSciNetzbMATHGoogle Scholar
  18. [18]
    M. Koppinen, Variations on the smash product with applications to group-graded rings, J. Pure Appl. Algebra 104 (1995), 61–80.CrossRefMathSciNetzbMATHGoogle Scholar
  19. [19]
    M. Sweedler, The predual theorem to the Jacobson-Bourbaki theorem, Trans. Amer. Math. Soc. 213 (1975), 391–406.CrossRefMathSciNetzbMATHGoogle Scholar
  20. [20]
    R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading-Paris, 1991.zbMATHGoogle Scholar
  21. [21]
    B. Zimmermann-Huisgen, Pure submodules of direct products of free modules, Math. Ann. 224 (1976), 233–245.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • L. El Kaoutit
    • 1
  • J. Gómez-Torrecillas
    • 2
  1. 1.Departamento de Álgebra Facultad de Educación y HumanidadesUniversidad de GranadaCeutaEspaña
  2. 2.Departamento de Álgebra Facultad de CienciasUniversidad de GranadaGranadaEspaña

Personalised recommendations