Injective Morita Contexts (Revisited)

  • J. Y. Abuhlail
  • S. K. Nauman
Conference paper
Part of the Trends in Mathematics book series (TM)


This paper is an exposition of the so-called injective Morita contexts (in which the connecting bimodule morphisms are injective) and Morita α-contexts (in which the connecting bimodules enjoy some local projectivity in the sense of Zimmermann-Huisgen). Motivated by situations in which only one trace ideal is in action, or the compatibility between the bimodule morphisms is not needed, we introduce the notions of Morita semi-contexts and Morita data, and investigate them. Injective Morita data will be used (with the help of static and adstatic modules) to establish equivalences between some intersecting subcategories related to subcategories of categories of modules that are localized or colocalized by trace ideals of a Morita datum. We end up with applications of Morita α-contexts to *-modules and injective right wide Morita contexts.


Full Subcategory Dual Pairing Module Category Abelian Category Unital Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Abr1983]
    G.D. Abrams, Morita equivalence for rings with local units, Comm. Algebra 11 (1983), 801–837.CrossRefMathSciNetMATHGoogle Scholar
  2. [Abu2005]
    J.Y. Abuhlail, On the linear weak topology and dual pairings over rings, Topology Appl. 149 (2005), 161–175.CrossRefMathSciNetMATHGoogle Scholar
  3. [AF1974]
    F. Anderson and K. Fuller, Rings and Categories of Modules, Springer-Verlag (1974).Google Scholar
  4. [AGH-Z1997]
    A.V. Arhangeĺskii, K.R. Goodearl and B. Huisgen-Zimmermann, Kiiti Morita, (1915–1995), Notices Amer. Math. Soc. 44(6) (1997), 680–684.MathSciNetGoogle Scholar
  5. [AG-TL2001]
    J.Y. Abuhlail, J. Gómez-Torrecillas and F. Lobillo, Duality and rational modules in Hopf algebras over commutative rings, J. Algebra 240 (2001), 165–184.CrossRefMathSciNetMATHGoogle Scholar
  6. [Alp1990]
    J.L. Alperin, Static modules and nonnormal Clifford theory, J. Austral. Math. Soc. Ser. A 49(3) (1990), 347–353.MathSciNetMATHCrossRefGoogle Scholar
  7. [AM1987]
    P.N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math 11 (1987), 1–16.MathSciNetMATHGoogle Scholar
  8. [Ami1971]
    S.A. Amitsur, Rings of quotients and Morita contexts, J. Algebra 17 (1971), 273–298.CrossRefMathSciNetMATHGoogle Scholar
  9. [Ber2003]
    I. Berbee, The Morita-Takeuchi theory for quotient categories, Comm. Algebra 31(2) (2003), 843–858.CrossRefMathSciNetGoogle Scholar
  10. [C-IG-T1995]
    F. Castaño Iglesias and J. Gomez-Torrecillas, Wide Morita contexts, Comm. Algebra 23 (1995), 601–622.CrossRefMathSciNetMATHGoogle Scholar
  11. [C-IG-T1996]
    F. Castaño Iglesias and J. Gomez-Torrecillas, Wide left Morita contexts and equivalences, Rev. Roum. Math. Pures Appl. 4(1–2) (1996), 17–26.MATHGoogle Scholar
  12. [C-IG-T1998]
    F. Castaño Iglesias and J. Gomez-Torrecillas, Wide Morita contexts and equivalences of comodule categories, J. Pure Appl. Algebra 131 (1998), 213–225.CrossRefMathSciNetMATHGoogle Scholar
  13. [BW2003]
    T. Brzeziński and R. Wisbauer, Corings and Comodules, Lond. Math. Soc. Lec. Not. Ser. 309, Cambridge University Press (2003).Google Scholar
  14. [Cae1998]
    S. Caenepeel, Brauer Groups, Hopf Algebras and Galois Theory, Kluwer Academic Publishers (1998).Google Scholar
  15. [C-IG-TW2003]
    F. Castaño Iglesias, J. Gómez-Torrecillas and R. Wisbauer, Adjoint functors and equivalence of subcategories, Bull. Sci. Math. 127 (2003), 279–395.Google Scholar
  16. [CDN2005]
    N. Chifan, S. Dăscălescu and C. Năstăsescu, Wide Morita contexts, relative injectivity and equivalence results, J. Algebra 284 (2005), 705–736.CrossRefMathSciNetMATHGoogle Scholar
  17. [Col1990]
    R. Colpi, Some remarks on equivalences between categories of modules, Comm. Algebra 18 (1990), 1935–1951.CrossRefMathSciNetMATHGoogle Scholar
  18. [CF2004]
    R. Colby and K. Fuller, Equivalence and Duality for Module Categories. With Tilting and Cotilting for Rings, Cambridge University Press (2004).Google Scholar
  19. [Fai1981]
    C. Faith, Algebra I, Rings, Modules and Categories, Springer-Verlag (1981).Google Scholar
  20. [Gol1979]
    J. Golan, An Introduction to Homological Algebra, Academic Press (1979).Google Scholar
  21. [HS1998]
    Z. Hao and K.-P. Shum, The Grothendieck groups of rings of Morita contexts, Group theory (Beijing, 1996), 88–97, Springer (1998).Google Scholar
  22. [Kat1978]
    T. Kato, Duality between colocalization and localization, J. Algebra 55 (1978), 351–374.CrossRefMathSciNetMATHGoogle Scholar
  23. [KO1979]
    T. Kato and K. Ohtake, Morita contexts and equivalences. J. Algebra 61 (1979), 360–366.CrossRefMathSciNetMATHGoogle Scholar
  24. [Lam1999]
    T.Y. Lam, Lectures on Modules and Rings, Springer (1999).Google Scholar
  25. [MO1989]
    C. Menini and A. Orsatti, Representable equivalences between categories of modules and applications. Rend. Sem. Mat. Univ. Padova 82 (1989), 203–231.MathSciNetMATHGoogle Scholar
  26. [Mül1974]
    B.J. Müller, The quotient category of a Morita context, J. Algebra 28 (1974), 389–407.CrossRefMathSciNetMATHGoogle Scholar
  27. [Nau1990a]
    S.K. Nauman, Static modules, Morita contexts, and equivalences. J. Algebra 135 (1990), 192–202.CrossRefMathSciNetMATHGoogle Scholar
  28. [Nau1990b]
    S.K. Nauman, Static modules and stable Clifford theory, J. Algebra 128(2) (1990), 497–509.CrossRefMathSciNetMATHGoogle Scholar
  29. [Nau1993]
    S.K. Nauman, Intersecting subcategories of static modules and their equivalences, J. Algebra 155(1) (1993), 252–265.CrossRefMathSciNetMATHGoogle Scholar
  30. [Nau1994-a]
    S.K. Nauman, An alternate criterion of localized modules, J. Algebra 164 (1994), 256–263.CrossRefMathSciNetMATHGoogle Scholar
  31. [Nau1994-b]
    S.K. Nauman, Intersecting subcategories of static modules, stable Clifford theory and colocalization-localization, J. Algebra 170(2) (1994), 400–421.CrossRefMathSciNetMATHGoogle Scholar
  32. [Nau2004]
    S.K. Nauman, Morita similar matrix rings and their Grothendieck groups, Aligarh Bull. Math. 23(1–2) (2004), 49–60.MathSciNetGoogle Scholar
  33. [Sat1978]
    M. Sato, Fuller’s Theorem of equivalences, J. Algebra 52 (1978), 274–284.CrossRefMathSciNetMATHGoogle Scholar
  34. [Tak1977]
    M. Takeuchi, Morita theorems for categories of comodules, J. Fac. Univ. Tokyo 24 (1977), 629–644.MATHGoogle Scholar
  35. [Trl1994]
    J. Trlifaj, Every *-module is finitely generated, J. Algebra 169 (1994), 392–398.CrossRefMathSciNetMATHGoogle Scholar
  36. [Ver2006]
    J. Vercruysse, Local units versus local dualisations: corings with local structure maps, Commun. Algebra 34 (2006), 2079–2103.CrossRefMathSciNetMATHGoogle Scholar
  37. [Wis1991]
    R. Wisbauer, Foundations of Module and Ring Theory, a Handbook for Study and Research, Gordon and Breach Science Publishers (1991).Google Scholar
  38. [Wis1998]
    R. Wisbauer, Tilting in module categories, in “Abelian groups, module theory and topology”, LNPAM 201 (1998), 421–444.MathSciNetGoogle Scholar
  39. [Wis2000]
    R. Wisbauer, Static modules and equivalences, in “Interactions between Ring Theory and Representation Theory”, Ed. V. Oystaeyen, M. Saorin, Marcel Decker (2000), 423–449.Google Scholar
  40. [Xin1999]
    Lin Xin, A note on *-modules, Algebra Colloq. 6(2) (1999), 231–240.MathSciNetMATHGoogle Scholar
  41. [Z-H1976]
    B. Zimmermann-Huisgen, Pure submodules of direct products of free modules, Math. Ann. 224 (1976), 233–245.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • J. Y. Abuhlail
    • 1
  • S. K. Nauman
    • 2
  1. 1.Department of Mathematics & StatisticsKing Fahd University of Petroleum & MineralsDhahran (KSA)
  2. 2.Department of MathematicsKing AbdulAziz UniversityJeddah (KSA)

Personalised recommendations