CO2 Degassing over Seismic Areas: The Role of Mechanochemical Production at the Study Case of Central Apennines

  • F. Italiano
  • G. Martinelli
  • P. Plescia
Part of the Pageoph Topical Volumes book series (PTV)


Field observations coupled with experimental results show that CO2 can be produced by mechanical energy applied to carbonate rocks becoming an unexpected additional gas source besides that degassed from the mantle or produced by thermometamorphism. The evidence that a large amount of carbon dioxide associated with radiogenic-type helium (R/Ra as low as 0.01–0.08) is released through continental areas, denotes the absence of a contribution from the mantle or from mantle-derived fluids. Data collected during the seismic crisis which struck the Central Apennines in 1997–98 have shown an enhanced CO2 flux not associated with the presence of mantle or thermometamorphic-derived fluids. On the other hand, new experimental results highlight the possibility of producing CO2 by mechanical energy that acts on the calcite crystalline lattice. While the CO2 released over the geothermal areas (e.g., Larderello Geothermal Field) is obviously derived by mantlederived activities, this is not the case of the huge amount of CO2 released over the seismically active areas where the presence mantle-derived products is ruled out. We propose that mechanical energy, e.g., released during seismic events, microseismicity or creeping processes is a possible additional energy source able to produce CO2 and thus could explain the presence of CO2 degassing over tectonic areas where the influence of the mantle is low.


Geothermal Area Seismic Area Helium Isotope Umbria Region Apennine Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aglietti, E.F., Lopez, P.J.M, and Pereira, E. (1986), Mechanochemical effects in kaolinite grinding, Int. J. Min. Proc. 16, 135–146.CrossRefGoogle Scholar
  2. Amato, A. and 18 others (1998), The 1997 Umbria-Marche, Italy, earthquake sequence: A first look at the main shocks and aftershocks, Geophys. Res. Lett. 25,15, 2861–2864.CrossRefGoogle Scholar
  3. Barbier, E. and Fanelli, M. (1976), Main fractures of Italy from Earts satellite images and correlations with thermal springs, volcanoes and earthquakes. In (Aoki, H. and Iizuka, S., Eds.).Google Scholar
  4. Basili, R. and Meghraoui, M. (2001), Coseismic and postseismic displacement related with the 1997 earthquake sequence in Umbria-Marche (Central Italy), Geophys. Res. Lett. 28,14, 2695–2698.CrossRefGoogle Scholar
  5. Boschi, E., Guidoboni, E., Ferrari, G., Mariotti, D., Valensise, G., and Gasperini, P. (2000), Catalogue of Strong Italian Earthquakes from 461 BC to 1197-Introductory text and CDrom. Annali di Geofisica 43,4, 609–868.Google Scholar
  6. Caracausi, A., Italiano, F., Martinelli, G., Paonita, A., and Rizzo, A. (2005), Long-term geochemical monitoring and extensive/compressive phenomena: Case study of the Umbria region (Central Apennines, Italy), Annals of Geophys. 48,1, 43–53.Google Scholar
  7. Cataldi, R., Mongelli, F., Squarci, P., Taffi, L., Zito, G., and Calore, C. (1995), Geothermal ranking of Italian territory. Geothermics 24, 115–129.CrossRefGoogle Scholar
  8. Catalogo della Sismicità Italiana (2003), CSI 1.1 1981–2002,
  9. Cerling, T., Quade, J., Yang, W., and Boreman, J. (1989), Soil and paleosols as ecologic and paleoecologic indicators, Nature 341, 138–139.CrossRefGoogle Scholar
  10. Chiodini, G., Frondini, F., and Ponziani, F. (1995), Deep structures and carbon dioxide degassing in Central Italy, Geothermics 24, 81–94.CrossRefGoogle Scholar
  11. Chiodini, G., Frondini, F., Kerrik, D.M., Rogie, J., Parello, F., Peruzzi, L., Zanzari, A.R. (1999), Quantification of deep CO 2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem. Geol. 159, 205–222.CrossRefGoogle Scholar
  12. Faure, G., Principles of Isotope Geology (J. Wiley, New York 1977).Google Scholar
  13. Favara, R., Italiano, F., and Martinelli, G. (2001), Earthquake-induced chemical changes in thermal waters of Umbria region during the 1997–1998 seismic swarm, Terra Nova, 13–3, 227–233.CrossRefGoogle Scholar
  14. Frepoli, A. and Amato, A. (1997), Contemporaneous extension and compression in the Northern Apennines from earthquake fault-plane solutions, Geophys. J. Int. 129, 368–388.CrossRefGoogle Scholar
  15. Gianelli, G. (1985), On the origin of geothermal CO 2 by metamorphic processes, Boll. Soc. Geol. Ital. 104, 575–584.Google Scholar
  16. Heinicke, J., Italiano, F., Lapenna, V., Martinelli, G., Nuccio, P.M. (2000), Coseismic geochemical variations in some gas emissions of Umbria region, Central Italy, Phys. Chem. Earth 25, 289–293.CrossRefGoogle Scholar
  17. Heinicke, J., Braun, T., Burgassi, P., Italiano, F., and Martinelli, G. (2006), Gas flux anomalies in seismogenic zones in the Upper Tiber Valley, Central, Geophys. J. Int. 167, 794–806.CrossRefGoogle Scholar
  18. Hickman, S. (1991), Stress in the lithosphere and the strength of active faults, Rev. Geophys. 29, 759–775.Google Scholar
  19. Irwin, W.P. and Barnes, I. (1980), Tectonic relations of carbon dioxide discharges and earthquakes, J. Geophys. Res. 85(B6), 3115–3121.CrossRefGoogle Scholar
  20. Italiano, F., Nuccio, P.M., and Pecoraino, G. (1994), Fumarolic gas output at La Fossa di Vulcano Crater, Acta Vulcanolog. 6, 39–40.Google Scholar
  21. Italiano, F., Martelli, M., Martinelli, G., and Nuccio, P.M. (2000), Geochemical evidences of melt intrusions along lithospheric faults of Irpinian Apennines (Southern Italy): Geodynamic and seismogenetic implications, J. Geophys. Res. 105,B6, 13569–13578.CrossRefGoogle Scholar
  22. Italiano, F., Martinelli, G., and Nuccio, P. M. (2001), Anomalies of mantle-derived helium during the 1997–1998 seismic swarm of Umbria-Marche, Italy, Geophys. Res. Lett. 28,5, 839–842.CrossRefGoogle Scholar
  23. Italiano, F., Martinelli, G., and Rizzo, A. (2004), Seismogenic-induced variations in the dissolved gases of the thermal waters of the Umbria region (Central Apennines, Italy) during and after the 1997–1998 seismic swarm. G-Cubed 5, 11, doi:10.1029/2004GC000720.Google Scholar
  24. Javoy, M., Pineau, F., and Delorme, H. (1986), Carbon and nitrogen isotopes in the mantle, Chem. Geol. 57, 41–62.CrossRefGoogle Scholar
  25. Kameda, J., Saruwatari, K., and Tanaka, H. (2004), H 2 generation during grinding of kaolinite, J. Colloid and Interface Sci. 275, 225–286.CrossRefGoogle Scholar
  26. Kanamori, H. (1994), Mechanics of earthquakes, Ann. Rev. Earth Planet. Sci. 22, 207–237.CrossRefGoogle Scholar
  27. Khomenko, V.M. and Langer, K. (1999), Aliphatic hydrocarbons in structural channels of cordierite: A first evidence from polarized single-crystal IR absorption spectroscopy, Am. Min. 84, 1181–1185.Google Scholar
  28. Kissin, I.G. and Pakhomov, S.I. (1967), The possibility of carbon dioxide generation at depth at moderately low temperature, Dokl. Akad. Nauk SSSR 174, 451–454.Google Scholar
  29. Kissin, I.G. and Pakhomov, S.I. (1969), A contribution to the geochemistry of carbon dioxide in deep zones of underground hydrosphere. Geokhimiya, 4, 450–471 (in Russian).Google Scholar
  30. Kissin, I.G. and Pakhomov, S.I. (1975), Some features of the geochemistry of thermal water in platform areas from experimental data. Proceedings of the Grenoble Symposium, August 1975, IAHS publication 119, 7–15.Google Scholar
  31. Mamyrin, B. A. and Tolstikhin, I. N. (1981), Helium Isotopes in Nature (Energoizdat, Moscow) [in Russian].Google Scholar
  32. Marini, L. and Chiodini, G. (1994), The role of carbon dioxide in the carbonate-evaporite geothermal systems of Tuscany and Latium (Italy), Acta Vulcanol. 5, 95–104.Google Scholar
  33. Martinelli, G. and Plescia P. (2004), Mechanochemical dissociation of calcium carbonate: laboratory data and relation to natural emissions of CO 2, Phys. Earth Planet. Int. 142,3–4, 205–214.CrossRefGoogle Scholar
  34. Marty, B., Jambon, A., and Sano, Y. (1989), Helium isotopes and CO 2 in volcanic gases of Japan. Chem. Geol, 76, 25–40.CrossRefGoogle Scholar
  35. Minissale, A. (1991), Thermal springs in Italy: Their relation to recent tectonics, Appl. Geochem. 6, 201–212.CrossRefGoogle Scholar
  36. Minissale, A., (2004), Origin, transport and discharge of CO 2 in Central Italy. Earth Sci. Rev. 66, 89–141.CrossRefGoogle Scholar
  37. Minissale, A., Evans, W., Magro, G., and Vaselli, O. (1997a), Multiple source components in gas manifestations from northcentral Italy, Chem. Geol. 142, 175–192.CrossRefGoogle Scholar
  38. Minissale, A., Kerrick, D.M., Magro, G., Murrell, M.T., Paladini, M., Rihs, S., Sturchio, N.C., Tassi, F., and Vaselli, O. (2002), Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications, Earth Planet. Sci. Lett. 203 709–728.CrossRefGoogle Scholar
  39. Montone, P., Amato, A., Frepoli, A., Mariucci, M.T., and Cesaro, M. (1997), Crustal stress regime in Italy, Annali di Geofisica XL,3, 741–757.Google Scholar
  40. Morelli, A., Ekstrom, G., and Oliveri, M. (2000), Source properties of the 1997–1998 Central Italy earthquake sequence from inversion of long-period and broad-band seismograms, J. Seismol. 4, 365–375.CrossRefGoogle Scholar
  41. O’Nions, R.K. and Oxburgh, E.R. (1983), Heat and helium in the Earth, Nature 306, 429–431.CrossRefGoogle Scholar
  42. OZIMA, M. and PODOSEK, F.A. Noble Gas Geochemistry. (Cambridge University Press, Cambridge, 1983) 286 pp.Google Scholar
  43. Panichi, C., and Tongiorgi, E. (1976), Carbon isotopic composition of CO 2 from springs, fumaroles, mofettes and travertines of central and southern Italy: A preliminary prospection method of geothermal areas, Proc. 2nd U.N. Symp. on the Develop. and Use of Geotherm. Energy, San Francisco, USA., 20–29 May 1975, pp. 815–825.Google Scholar
  44. Plescia, P., Gizzi, D., Benedetti, S., Camilucci, L., Fanizza, C., and Paglietti, F. (2003), Mechanochemical treatment to recycling asbestos containing waste, Waste Managem. 23, 209–218.CrossRefGoogle Scholar
  45. Polyak, B.G., Tolstikhin, I.N. (1985), Isotopic composition of the Earth’s helium and the problem of tectogenesis. Chem. Geol. 52, 9–33.Google Scholar
  46. Rollinson, H., Using Geochemical Data (Longman Group, London 1993).Google Scholar
  47. Sano, Y., Wakita, H., Italiano, F., and Nuccio, P.M. (1989), Helium isotopes and tectonics in southern Italy, Geophys. Res. Lett. 16,6, 511–514.CrossRefGoogle Scholar
  48. Stoppa, F. (1988), L’eurimite di Colle Fabbri (Spoleto): un litotipo ad affinità carbonatitica in Italia, Boll. Soc. Geol. It. 107, 239–248.Google Scholar
  49. Stoppa, F. and Sforna, S. (1995), Geological map of the San Venanzo volcano (Central Italy): Explanatory notes, Acta Vulcanologica 7, 85–91.Google Scholar
  50. Stramondo et al. (1999).Google Scholar
  51. Zoback, M.L., Zoback, V., Mount, J., Eaton, J., and Healy et al. (1987), New evidence of the state of stress of the San Andreas fault zone, Sci. 238, 1105–1111.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2008

Authors and Affiliations

  • F. Italiano
    • 1
  • G. Martinelli
    • 2
  • P. Plescia
    • 3
  1. 1.INGV Istituto Nazionale Geofisica e VulcanologiaSezione di PalermoItaly
  2. 2.ARPA Environmental Protection Agency of Emilia RomagnaReggio EmiliaItaly
  3. 3.CNR Istituto Studio Materiali NanostrutturatiMontelibretti RMItaly

Personalised recommendations