Skip to main content

Precursory Subsurface 222Rn and 220Rn Degassing Signatures of the 2004 Seismic Crisis at Tenerife, Canary Islands

  • Chapter
Book cover Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume II

Abstract

Precursory geochemical signatures of radon degassing in the subsurface of the Tenerife Island were observed several months prior to the recent 2004 seismic-volcanic crisis. These premonitory signatures were detected by means of a continuous monitoring of 222Rn and 220Rn activity from a bubbling CO2-rich gas spot located at 2.850 m depth inside a horizontal gallery for groundwater exploitation at Tenerife. Multivariate Regression Analysis (MRA) on time series of the radon activity was applied to eliminate the radon activity fluctuation due to external variables such as barometric pressure, temperature and relative humidity as well as power supply. Material Failure Forecast Method (FFM) was successfully applied to forecast the anomalous seismicity registered in Tenerife Island in 2004. The changes in the 222Rn/220Rn ratio observed after the period of anomalous seismicity might suggest a higher gas flow rate and/or changes in the vertical permeability induced by seismic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablay, G.J. and MartÍ, J. (2000), Stratigraphy, structure, and volcanic evolution of the Pico Teide-Pico Viejo formation, Tenerife, Canary Islands, J. Volcan. Geotherm. Res. 103, 175–208.

    Article  Google Scholar 

  • Alparone, S., Behncke, B., Giammanco, S., Neri, M., and Privitera, E. (2005), Paroxysmal summit activity at Mt. Etna monitored through continuous soil radon measurements, Geophys. Res. Lett. 32, L16307, doi: 10.1029/2005GL023352.

    Article  Google Scholar 

  • Ancoechea, E., FÚster, J.M., Ibarrola, E., Cendrero, A., Coello, J., HernÁn, F., Cantagrel, J.M., and Jamond, C. (1990), Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data, J. Volcanol. Geotherm. Res. 44, 231–249.

    Article  Google Scholar 

  • Almendros, J., IbÁÑez, J.M., Carmona, E., and Zandomeneghi, D. (2006), Array analyses of volcanic earthquakes and tremor recorded at Las Cañadas caldera (Tenerife Island, Spain) during the 2004 seismic activation of Teide volcano, J. Volcanol. Geotherm. Res. 160, 285–299.

    Article  Google Scholar 

  • Baubron, J.C., Rigo, A., and Toutain, J.P. (2002), Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pirenees, France), Earth Planet. Sci. Lett. 196, 69–81.

    Article  Google Scholar 

  • Canas, J.A., Ugalde, A., Pujades, L.G., Carracedo, J.C., Soler, V., and Blanco, M.J. (1998), Intrinsic and scattering seismic wave attenuation in the Canary Islands, J. Geophys. Res. 103(B7), 15,037–15,050.

    Article  Google Scholar 

  • Chirkov, A.M. (1975), Radon as a possible criterion for predicting eruptions as observed at Karymsky volcano, Bull. Volcanol. 39, 126–131.

    Article  Google Scholar 

  • Cornelius, R.R. and Voight, B. (1994), Seismological aspects of the 1989–1900 eruption at Rebout volcano, Alaska: The Materials Failure Forecast Method with RSAM and SSAM seismic data, J. Volcanol. Geotherm. Res. 62, 469–498.

    Article  Google Scholar 

  • Cornelius, R.R. and Voight, B. (1995), RSAM and SSAM seismic analyses with the Materils Failure Forecast Method (FMM), June 1991 explosive eruption at Pinatubo volcano, Philippines, U.S. Geological Survey Prof. Paper.

    Google Scholar 

  • Eff-Darwich, A., MartÍn-Luis, C., Quesada, M., De La Nuez, J., and Coello, J. (2002), Variations on the concentration of 222 Rn in the subsurface of the volcanic island of Tenerife, Canary Islands, Geophys. Res. Lett. 29(22): doi: 10.1029/2002GL015387. issue: 0094-8276.

    Google Scholar 

  • Etiope, G. and Martinelli, G. (2002), Migration of carrier and trace gases in the geosphere: an overview, Phys. Earth Planet. Int. 129, 185–204.

    Article  Google Scholar 

  • Flerov, G.N., Chirkov, A.M., Tretyakova, S.P., Dzholos, L.V., and Merkina, K.I. (1986), The use of radon as an indicator of volcanic processes. Earth Phys. 22, 213–216.

    Google Scholar 

  • Galindo, I. (2005), Estructura Volcano-Tectónica y Emisión Difusa de gases de Tenerife (Islas Canarias)., Ph.D. Thesis, University of Barcelona.

    Google Scholar 

  • Giammanco, S., Sims, K.W.W., and Neri, M. (2007), Measurements of 220 Rn and 222 Rn and CO 2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture, Geochem. Geophys. Geosyst. 8, Q10001, doi:10.1029/2007GC001644.

    Article  Google Scholar 

  • Gottsmann, J., Wooller, L., MartÍ, J., FernÁndez, J., Camacho, A.G., GonzÁlez, P.J., GarcÍa, A., and Rymer, H. (2006), New evidence for the reawakening of Teide volcano, Geophys. Res. Let. 33, L20311, doi: 10.1029/2006GL027523.

    Article  Google Scholar 

  • Guerra, M. and Lombardi, S. (2001), Soil-gas meted for tracing neotectonic faults in clay basins: the Pisticci field (Southern Italy), Tectonophysics 339, 511–522.

    Article  Google Scholar 

  • Harley, N.H., Chittaporn, P., Medora, R., Merrill, R., and Wanitsooksumbut, W. (2005), Thoron versus radon: measurement and dosimetry, International Congress Series 1276, 72–75.

    Article  Google Scholar 

  • Heiligmann, M., Stix, J., Williams-Jones, G., Sherwood-Lollar, B., and GarzÓn, G. (1997), Distal degassing of radon and carbon dioxide on Galeras volcano, Colombia, J. Volcanol. Geotherm. Res. 77, 267–283.

    Article  Google Scholar 

  • HernÁndez, P.A., PÉrez, N.M., Salazar, J.M.L., Nakai, S., Notsu, K., and Wakita, H. (1998), Diffuse emission of carbon dioxide, methane, and helium-3 from Teide volcano, Tenerife, Canary Islands, Geophys. Res. Lett. 25,17, 3311–3314.

    Article  Google Scholar 

  • HernÁndez, P.A., PÉrez, N., Salazar, J.M.L., Sato, M., Notsu, K., and Wakita, H. (2000), Soil gas CO 2, CH 4, and H 2 distribution in and around Las Cañadas caldera, Tenerife, Canary Islands, Spain, J. Volcanol. Geotherm. Res. 103, 425–438.

    Article  Google Scholar 

  • HernÁndez, P.A., PÉrez, N.M., Salazar, J., Reimer, G.M., Kenji Notsu, and Wakita, H. (2004), Radon and helium in soil gases at Cañadas Caldera, Tenerife, Canary Island, Spain, J. Volcanol. Geotherm. Res. 2721, 1–18.

    Google Scholar 

  • HernÁndez, P.A., PÉrez, N.M., PadrÓn, E., MeliÁn, G., and Pereda, E. (2006a), Diffuse CO 2 emission changes at the summit cone of Teide volcano and relation to seismic activity in and around Tenerife, Canary Islands, Garavolcan International Meeting. Session 6: Tenerife’s experience: scientific results and the recent seismicvolcanic crisis, Garachico, Tenerife, Spain.

    Google Scholar 

  • HernÁndez, P.A., PÉrez, N., PadrÓn, E., and MeliÁn, G., (2006b), Continuous monitoring of dissolved gases by means of QMS and radon sensors for Tenerife’s volcanic surveillance, Garavolcan International Meeting. Session 6: Tenerife’s experience: Scientific results and the recent seismicvolcanic crisis, Garachico, Tenerife, Spain.

    Google Scholar 

  • Hirotaka, U.I., Moriuchi, H., Takemura, Y., Tsuchida, H., Fujii, I., and Nakamura, M., (1988), Anomalously high radon discharge from Atotsugawa Fault prior to the western Nagano Prefecture earthquake (M 6.8) of September 14, 1984, Tectonophysics 152, 147–152.

    Article  Google Scholar 

  • Holub, R.F., and Brady, B.T., (1981), The effect of stress on radon emanation from rock, J. Geophys. Res. 86(B3), 1776–1784.

    Article  Google Scholar 

  • Hopke, P.K. (1987), Radon and its decay products: An overview. In (Hopke, P.K., eds.), Radon and its Decay Products: Occurrence, Properties, and Health elects, Am. Chem. Soc., Washington, DC, pp. 1–10.

    Google Scholar 

  • Igarashi, G. and Wakita, H. (1990), Groundwater radon anomalies associated with earthquake, Tectnophysics 180, 237–254.

    Article  Google Scholar 

  • Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M. and Sano, Y. (1995), Groundwater radon anomaly before the Kobe earthquake in Japan, Science, 269, 60–61.

    Article  Google Scholar 

  • ImmÈ, G., La Delfa, S., Lo Nigro, S., Morelli, D., and PatanÈ, G. (2006), Soil radon concentrations and volcanic activity of Mt. Etna before and after the 2002 eruption, Rad. Meas. 41, 241–245.

    Article  Google Scholar 

  • King, C.Y. (1978), Radon emanation on San Andreas fault, Nature 271, 516–519.

    Article  Google Scholar 

  • King, C.Y. (1986), Gas geochemistry applied to earthquake prediction: An overview, J. Geophys. Res. 91, 12269–12281.

    Article  Google Scholar 

  • LaBrecque, J.J. (2002), Simple and rapid methods for on-site determination of radon and thoron in soil-gases for seismic studies, J. Radioanalytical. Nuclear Chem. 254,3,439–444.

    Article  Google Scholar 

  • LÓpez, C., Blanco, M. J., and CarreÑo E. (2006), Analysis of IGN seismic series in Tenerife that triggered the 2004 seismovolcanic alert, Garavolcan International Meeting. Session 6: Tenerife’s experience:sicientif results and the recient seismovolcanic crisis, Garachico, Tenerife, Spain.

    Google Scholar 

  • Marrero, R., Salazar, P., Lopez, D., HernÁndez, P.A., and PÉrez, N.M. (2005), Hydrogeochemical monitoring for volcanic surveillance at Tenerife, Canary Islands, Geophys. Res. Abstr. 7, 09928.

    Google Scholar 

  • Marrero, R., MeliÁn, G., PadrÓn, E., Barrancos, J., Calvo, D.L, Nolasco, D., Padilla, G., LÓpez, D.L., HernÁndez, P.A., and PÉrez, N. Physical-chemical hydrological changes related to the recent volcanic unrest at Tenerife, Canary Islands, M., J. Volcanol. Geothem. Res., submitted to JVGR.

    Google Scholar 

  • MartÍ, J., Mitjavila, J., and AraÑa, V. (1994), Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands), Geol. Mag. 131, 715–727.

    Article  Google Scholar 

  • MartÍ, J. and Gudmundsson, A. (2000), The Las Cañadas caldera (Tenerife, Canary Island): An overlapping collapse caldera generated by magma-chamber migration, J. Volcanol. Geothem. Res. 103, 161–173.

    Article  Google Scholar 

  • Mezcua, J., Buforn, E., Udias, A., and Rueda, J. (1992), Seismotectonics of the Canary Islands, Tectonophysics 208, 447–452.

    Article  Google Scholar 

  • Neri, M., Behncke, B., Burton, M., Galli, G., Giammanco, S., Pecora, E., Privitera, E. and Reitano, D. (2006), Continuous soil radon monitoring during the July 2006 Etna eruption, Geophys. Res. Lett. 33, L24316, doi: 10.1029/2006GL028394.

    Article  Google Scholar 

  • OrtÍz, R., Moreno, H., GarcÍa, A., Fuentealba, G., Astiz, M., PeÑa, P., SÁnchez, N., and TÁrraga, M. (2003), Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method, J. Volcanol. Geotherm. Res. 128, 247–259.

    Article  Google Scholar 

  • PÉrez, N.M., Sturchio, N.C, Arehart, G., HernÁndez, P.A., and Wakita, H. (1996), Short-term secular variations of carbon and radon isotopes and relation to seismic activity in the Canary Islands, Spain, Bull. Lab. Erathquake Chem. 31–33.

    Google Scholar 

  • PÉrez, N.M., HernÁndez, P.A., Lima, N., MeliÁn, G., Galindo, I., PadrÓn, E., Marrero, R., Salazar, P., GÓmez, L., GonzÁlez, P., Coello, C., and PÉrez, V., (2004). Reducing volcanic risk in the Canary Islands: Are we doing the homework? Abstracts of the Internat. Symp. Reducing Volcanic Risk in Islands, June 2–6, Tenerife, Canary Islands, Spain.

    Google Scholar 

  • PÉrez et al. (2005). Premonitory geochemical and geophysical signatures of volcanic unrest at Tenerife, Canary Islands, Geophys. Res. Abstracts, Vol. 7, 09993.

    Google Scholar 

  • Pinault, J. and Baubron, J. (1996), Signal processing of soil gas radon, atmospheric pressure, moisture and soil temperature data: A new approach for radon concentration modelling, J. Geophys. Res. 101, 3157–3171.

    Article  Google Scholar 

  • Richon, P.1 Sabroux, J.-C., Halbwachs, M., Vandemeulebrouck, J., Poussielgue, N., Tabbagh, J., and Punongbayan, R. (2003), Radon anomaly in the soil of Taal volcano, the Philippines: A likely precursor of the M 7.1 Mindoro earthquake (1994), Geophys. Res. Lett. 30(9), 1481, doi:10.1029/2003GL016902.

    Article  Google Scholar 

  • Romero, C. (1991), Las manifestaciones volcánicas históricas del archipie’lago canario (2 vols), Gobierno de Canarias, Sta. Cruz de Tenerife, Spain.

    Google Scholar 

  • Smith, A.Y., Barreto, P.M.C., and Pournis, S. (1976), Radon methods in uranium exploration, In Proc. Symp. Exploration for Uranium Ore Deposits, IAEA, Vienna, pp. 185–211.

    Google Scholar 

  • Toutain, J.-P., and Baubron, J.-C. (1999), Gas geochemistry and seismotectonics: A review, Tectonophysics 304, 1–27.

    Article  Google Scholar 

  • Virk, H.S. (1986), Radon monitoring and earthquake prediction. In Proc. International Syposium Earthquake Prediction-Present Status, University of Poona, Pune, India 157–162.

    Google Scholar 

  • Virk, H.S., Walia, V., and Kurmar, N. (2001), Helium/radon precursory anomalies of Chamoli earthquake, Garhwal Himalaya, India, J. Geodynamics 31, 201–210.

    Article  Google Scholar 

  • Voight, B. (1988), A method for prediction of volcanic eruptions, Nature 332, 125–130.

    Article  Google Scholar 

  • Walia, V., Su, T.C., Fu, C.C., and Yang, T.F. (2005), Spatial variations of radon and helium concentration in soil-gas across the Shan-Chiao fault, Nothern Taiwan, Rad. Measurem. 40, 513–516.

    Article  Google Scholar 

  • Williams, S.N., (1985), Soil radon and elemental mercury distribution and relation to magmatic resurgence at Long Valley Caldera, Science 229, 551–553.

    Article  Google Scholar 

  • Yamaoka, K. (1993), State of stress and magma movement inferred from seismic activity during 1986–1987 eruption of Izu-Oshima volcano, Workshop on Volcanic Disaster Prevention, 8–12 March 1992, Menlo Park, CA, 16–22.

    Google Scholar 

  • Yang, T.F., Walia, V., Chyi, L.L., Fu, C.C., Chen, C.-H., Liu, T.K., Song, S.R., Lee, C.Y., and Lee, M. (2005), Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan, Rad. Measurements 40, 496–502.

    Article  Google Scholar 

  • Yoshikawa, H., Nakanishi, T., and Nakahara, H. (2006), Determination of thoron and radon ratio by liquid scintillation spectrometry, J. Radioanal. Nuclear Chem. 267, 195–203, doi: 10.1007/s10967-006-0027-7.

    Article  Google Scholar 

  • Zmazek, B., Zivcic, M., Todorovski, L., Dzeroski, S., Vaupotic, J., and Kobal, I. (2005), Radon I soil gas: How to identify anomalies caused by earthquakes, Appl. Radiat. Isot. 20, 1106–1109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Pérez, N.M. et al. (2007). Precursory Subsurface 222Rn and 220Rn Degassing Signatures of the 2004 Seismic Crisis at Tenerife, Canary Islands. In: Pérez, N.M., Gurrieri, S., King, CY., Taran, Y. (eds) Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume II. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8720-4_5

Download citation

Publish with us

Policies and ethics