New molecules and formulations

  • Steven G. Elliott
Part of the Milestones in Drug Therapy book series (MDT)


Recombinant human erythropoietin (rHuEPO; epoetin alfa), is a glycosylated hormone commonly used for the treatment of anemia associated with chronic kidney disease [1, 2, 3, 4]. It is also indicated for the treatment of certain anemias associated with cancer, HIV infection, and for use in surgical situations to reduce allogeneic blood transfusion requirements. A number of studies have demonstrated that rHuEPO is well tolerated and effective at ameliorating anemia, restoring energy levels, and improving patient quality of life in these indications [5, 6, 7]. It has also been shown to reduce transfusions, a procedure that can carry inherent risks including transmission of infectious agents and iron overload. In addition, the blood supply is limited and transfusion-induced immune reactions can complicate organ transplantation, for example in patients with kidney transplants.


Sialic Acid Darbepoetin Alfa Recombinant Human Erythropoietin Sialic Acid Content Erythropoietin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Winearls CG, Forman E, Wiffen P et al. Recombinant human erythropoietin treatment in patients on maintenance home haemodialysis. Lancet 1989;2:569.PubMedCrossRefGoogle Scholar
  2. 2.
    Eschbach JW, Egrie JC, Downing MR et al. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med 1987;316:73–78.PubMedGoogle Scholar
  3. 3.
    Eschbach JW, Abdulhadi MH, Browne JK et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Intern Med 1989;111:992–1000.PubMedGoogle Scholar
  4. 4.
    Eschbach JW, Kelly MR, Haley NR et al. Treatment of the anemia of progressive renal failure with recombinant human erythropoietin. N Engl J Med 1989;321:158–163.PubMedGoogle Scholar
  5. 5.
    Delano BG. Improvements in quality of life following treatment with r-HuEPO in anemic hemodialysis patients. Am J Kidney Dis 1989;14(2 Suppl 1):14–18.PubMedGoogle Scholar
  6. 6.
    Moreno F, Aracil FJ, Perez R et al. Controlled study on the improvement of quality of life in elderly hemodialysis patients after correcting end-stage renal disease-related anemia with erythropoietin. Am J Kidney Dis 1996;27:548–556.PubMedCrossRefGoogle Scholar
  7. 7.
    Guthrie M, Cardenas D, Eschbach JW et al. Effects of erythropoietin on strength and functional status of patients on hemodialysis. Clin Nephrol 1993;39:97–102.PubMedGoogle Scholar
  8. 8.
    Combe C, Tredree RL, Schellekens H. Biosimilar epoetins: An analysis based on recently implemented European Medicines Evaluation Agency guidelines on comparability of biopharmaceutical proteins. Pharmacotherapy 2005;25:954–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Cleland JL, Powell MF, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 1993; 10:307–377.PubMedGoogle Scholar
  10. 10.
    Lasne F, Martin L, Crepin N et al. Detection of isoelectric profiles of erythropoietin in urine: Differentiation of natural and administered recombinant hormones. Anal Biochem 2002;311:119–126.PubMedCrossRefGoogle Scholar
  11. 11.
    Storring PL, Tiplady RJ, Gaines Das RE et al. Epoetin alfa and beta differ in their erythropoietin isoform compositions and biological properties. Br J Haematol 1998;100:79–89.PubMedCrossRefGoogle Scholar
  12. 12.
    Martin KJ. The first human cell line-derived erythropoietin, epoetin-delta (Dynepo), in the management of anemia in patients with chronic kidney disease. Clin Nephrol 2007;68:26–31.PubMedGoogle Scholar
  13. 13.
    Casadevall N, Nataf J, Viron B et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med 2002;346:469–475.PubMedCrossRefGoogle Scholar
  14. 14.
    Smalling R, Foote M, Molineux G et al. Drug-induced and antibody-mediated pure red cell aplasia: A review of literature and current knowledge. Biotechnol Ann Rev 2004;10:237–249.CrossRefGoogle Scholar
  15. 15.
    Youssoufian H, Longmore G, Neumann D et al. Structure, function, and activation of the erythropoietin receptor. Blood 1993;81:2223–2236.PubMedGoogle Scholar
  16. 16.
    Constantinescu SN, Keren T, Socolovsky M et al. Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain. Proc Natl Acad Sci USA 2001;98:4379–4384.PubMedCrossRefGoogle Scholar
  17. 17.
    Seubert N, Royer Y, Staerk J et al. Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. Molecular Cell 2003;12:1239–1250.PubMedCrossRefGoogle Scholar
  18. 18.
    Syed RS, Reid SW, Li C et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 1998;395:511–516.PubMedCrossRefGoogle Scholar
  19. 19.
    Elliott S, Lorenzini T, Yanagihara D et al. Activation of the erythropoietin (EPO) receptor by biyalent anti-EPO receptor antibodies. J Biol Chem 1996;271:24691–24697.PubMedCrossRefGoogle Scholar
  20. 20.
    Elliott S, Lorenzini T, Chang D et al. Mapping of the active site of recombinant human erythropoietin. Blood 1997;89:493–502PubMedGoogle Scholar
  21. 21.
    Watowich SS. Activation of erythropoietin signaling by receptor dimerization. Internl J. Biochem Cell Biol 1999;31:1075–1088.CrossRefGoogle Scholar
  22. 22.
    Philo JS, Aoki KH, Arakawa T et al. Dimerization of the extracellular domain of the erythropoietin (EPO) receptor by EPO: one high-affinity and one low-affinity interaction. Biochemistry 1996;35:1681–1691.PubMedCrossRefGoogle Scholar
  23. 23.
    Matthews DJ, Topping RS, Cass RT et al. A sequential dimerization mechanism for erythropoietin receptor activation. Proc Natl Acad Sci USA 1996;93:9471–9476.PubMedCrossRefGoogle Scholar
  24. 24.
    Elliott S, Egrie J, Browne J et al. Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 2004;32:1146–1155.PubMedCrossRefGoogle Scholar
  25. 25.
    Sawada K, Krantz SB, Sawyer ST et al. Quantitation of specific binding of erythropoietin to human erythroid colony forming cells. J Cell Physiol 1988;137:337–345.PubMedCrossRefGoogle Scholar
  26. 26.
    Sawyer ST, Krantz SB, Goldwasser E. Binding and receptor-mediated endocytosis of erythropoietin in Friend virus-infected erythroid cells. J Biol Chem 1987;262:5554–5562.PubMedGoogle Scholar
  27. 27.
    Sawyer ST. Introduction: the erythropoietin receptor and signal transduction. Ann NY Acad Sci 1994;718:185–190.PubMedGoogle Scholar
  28. 28.
    Delorme E, Lorenzini T, Giffin J et al. Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 1992;31:9871–9876.PubMedCrossRefGoogle Scholar
  29. 29.
    Takeuchi M, Takasaki S, Shimada M et al. Role of sugar chains in the in vitro biological activity of human erythropoietin produced in recombinant Chinese hamster ovary cells. J Biol Chem 1990;265:12127–12130.PubMedGoogle Scholar
  30. 30.
    Fukuda MN, Sasaki H, Lopez L et al. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 1989;73:84–89.PubMedGoogle Scholar
  31. 31.
    Egrie JC, Dwyer E, Browne JK et al. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 2003;31:290–299.PubMedCrossRefGoogle Scholar
  32. 32.
    Jarsch M, Brandt M, Lanzendorfer M et al. Comparative erythropoietin receptor binding kinetics of C.E.R.A. and epoetin-beta determined by surface plasmon resonance and competition binding assay. Pharmacology 2008;81:63–69.PubMedCrossRefGoogle Scholar
  33. 33.
    Schneider H, Chaovapong W, Matthews DJ et al. Homodimerization of erythropoietin receptor by a bivalent monoclonal antibody triggers cell proliferation and differentiation of erythroid precursors. Blood 1997;89:473–482.PubMedGoogle Scholar
  34. 34.
    Uchida E, Morimoto K, Kawasaki N et al. Effect of active oxygen radicals on protein and carbohydrate moieties of recombinant human erythropoietin. Free Radical Res 1997;27:311–323.CrossRefGoogle Scholar
  35. 35.
    Elliott S, Lorenzini T, Asher S et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 2003;21:414–421.PubMedCrossRefGoogle Scholar
  36. 36.
    Lai PH, Everett R, Wang FF et al. Structural characterization of human erythropoietin. J Biol Chem 1986;261:3116–3121.PubMedGoogle Scholar
  37. 37.
    Sasaki H, Bothner B, Dell A et al. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 1987;262:12059–12076.PubMedGoogle Scholar
  38. 38.
    Rush RS, Derby PL, Smith DM et al. Microheterogeneity of erythropoietin carbohydrate structure. Anal Chem 1995;67:1442–1452.PubMedCrossRefGoogle Scholar
  39. 39.
    Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dialy Transplant 2001;16:Suppl-13.Google Scholar
  40. 40.
    Roitsch T, Lehle L. Structural requirements for protein N-glycosylation. Influence of acceptor peptides on cotranslational glycosylation of yeast invertase and site-directed mutagenesis around a sequon sequence. Eur J Biochem 1989;181:525–529.PubMedCrossRefGoogle Scholar
  41. 41.
    Elliott S, Chang D, Delorme E et al. Structural requirements for additional N-linked carbohydrate on recombinant human erythropoietin. J Biol Chem 2004;279:16854–16862.PubMedCrossRefGoogle Scholar
  42. 42.
    Dennis JW, Granovsky M, Warren CE. Protein glycosylation in development and disease. Bioessays 1999;21:412–421.PubMedCrossRefGoogle Scholar
  43. 43.
    Elliott S, Chang D, Delorme E et al. Isolation and characterization of conformation sensitive antierythropoietin monoclonal antibodies: effect of disulfide bonds and carbohydrate on recombinant human erythropoietin structure. Blood 1996;87:2714–2722.PubMedGoogle Scholar
  44. 44.
    Elliott S, Lorenzini T, Chang D et al. Fine-structure epitope mapping of antierythropoietin monoclonal antibodies reveals a model of recombinant human erythropoietin structure. Blood 1996;87:2702–2713.PubMedGoogle Scholar
  45. 45.
    Sasu BA, Hartley C, McElroy T et al. Has the unit of erythropoietic activity outlived its usefulness? Blood 2004;102:4386.Google Scholar
  46. 46.
    Macdougall IC, Gray SJ, Elston O et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol 1999;10:2392–2395.PubMedGoogle Scholar
  47. 47.
    Nissenson AR. Novel erythropoiesis stimulating protein for managing the anemia of chronic kidney disease. Am J Kid Dis 2001;38:1390–1397.PubMedCrossRefGoogle Scholar
  48. 48.
    Nissenson AR, Swan SK, Lindberg JS et al. Randomized, controlled trial of darbepoetin alfa for the treatment of anemia in hemodialysis patients. Am J Kidney Dis 2002;40:110–118.PubMedCrossRefGoogle Scholar
  49. 49.
    Smith RE Jr, Tchekmedyian NS, Chan D et al. A dose-and schedule-finding study of darbepoetin alpha for the treatment of chronic anaemia of cancer. Br J Cancer 2003;88:1851–1858.PubMedCrossRefGoogle Scholar
  50. 50.
    Ling B, Walczyk M, Agarwal A et al. Darbepoetin alfa administered once monthly maintains hemoglobin concentrations in patients with chronic kidney disease. Clin Nephrol 2005;63:327–334.PubMedGoogle Scholar
  51. 51.
    Canon JL, Vansteenkiste J, Bodoky G et al. Randomized, double-blind, active-controlled trial of every-3-week darbepoetin alfa for the treatment of chemotherapy-induced anemia. J Natl Cancer Inst 2006;98:273–284.PubMedGoogle Scholar
  52. 52.
    Narhi LO, Arakawa T, Aoki KH et al. The effect of carbohydrate on the structure and stability of erythropoietin. J Biol Chem 1991;266:23022–23026.PubMedGoogle Scholar
  53. 53.
    Endo Y, Nagai H, Watanabe Y et al. Heat-induced aggregation of recombinant erythropoietin in the intact and deglycosylated states as monitored by gel permeation chromatography combined with a low-angle laser light scattering technique. J. Biol Chem 1992;112:700–706.Google Scholar
  54. 54.
    Lis H, Sharon N. Protein glycosylation. Structural and functional aspects. Eur J Biochem 1993;218:1–27.PubMedCrossRefGoogle Scholar
  55. 55.
    Elliott S, Aoki K, Agoram B et al. Evaluation of hyperglycosylated erythropoiesis stimulating proteins developed using glycoengineering. Proc Am Assoc Cancer Res 2006;47:abstract 2176.Google Scholar
  56. 56.
    Osterborg A, De Boer R, Clemens M et al. A novel erythropoiesis-stimulating agent (AMG114) with 131-hour half-life effectively treats chemotherapy-induced anemia when administered as 200 meg every 3 weeks. J Clin Oncol 2006;24:8626.Google Scholar
  57. 57.
    Delgado C, Francis GE, Fisher D. The uses and properties of PEG-linked proteins. Crit Rev Therap Drug Carrier Syst 1992;9:249–304.Google Scholar
  58. 58.
    Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 1994;83:601–606.PubMedCrossRefGoogle Scholar
  59. 59.
    Francis GE, Fisher D, Delgado C et al. PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimisation of coupling techniques. Int J Hematol 1998;68:1–18.PubMedCrossRefGoogle Scholar
  60. 60.
    Goodson RJ, Katre NV. Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Bio-Technology 1990;8:343–346.PubMedGoogle Scholar
  61. 61.
    He XH, Shaw PC, Tam SC. Reducing the immunogenicity and improving the in vivo activity of trichosanthin by site-directed pegylation. Life Sci 1999;65:355–368.PubMedCrossRefGoogle Scholar
  62. 62.
    Long DL, Doherty DH, Eisenberg SP et al. Design of homogeneous, monopegylated erythropoietin analogs with preserved in vitro bioactivity. Exp Hematol 2006;34:697–704.PubMedCrossRefGoogle Scholar
  63. 63.
    Chen SY, Cressman S, Mao F et al. Synthetic erythropoietic proteins: tuning biological performance by site-specific polymer attachment. Chem Biol 2005;12:371–383.PubMedCrossRefGoogle Scholar
  64. 64.
    Kochendoerfer G. Chemical and biological properties of polymer-modified proteins. Expert Opin Biol Thera 2003;3:1253–1261.CrossRefGoogle Scholar
  65. 65.
    Weich NS, Tullai J, Guido E et al. Interleukin-3/erythropoietin fusion proteins: in vitro effects on hematopoietic cells. Exp Hematol 1993;21:647–655.PubMedGoogle Scholar
  66. 66.
    Coscarella A, Carloni C, Liddi R et al. Production of recombinant human GM-CSF-EPO hybrid proteins: in vitro biological characterization. Eur J Haematol 1997;59:238–246.PubMedGoogle Scholar
  67. 67.
    Sytkowski AJ, Lunn ED, Davis KL et al. Human erythropoietin dimers with markedly enhanced in vivo activity. Proc Natl Acad Sci USA 1998;95:1184–1188.PubMedCrossRefGoogle Scholar
  68. 68.
    Sytkowski AJ, Lunn ED, Risinger MA et al. An erythropoietin fusion protein comprised of identical repeating domains exhibits enhanced biological properties. J Biol Chem 1999;274:24773–24778.PubMedCrossRefGoogle Scholar
  69. 69.
    Dalle B, Henri A, Rouyer-Fessard P et al. Dimeric erythropoietin fusion protein with enhanced erythropoietic activity in vitro and in vivo. Blood 2001;97:3776–3782.PubMedCrossRefGoogle Scholar
  70. 70.
    Coscarella A, Liddi R, Di Loreto M et al. The rhGM-CSF-EPO hybrid protein MEN 11300 induces anti-EPO antibodies and severe anaemia in rhesus monkeys. Cytokine 1998;10:964–969.PubMedCrossRefGoogle Scholar
  71. 71.
    Yoshimura A, Longmore G, Lodish HF. Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 1990;348:647–649.PubMedCrossRefGoogle Scholar
  72. 72.
    Wrighton NC, Farrell FX, Chang R et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996;273:458–464.PubMedCrossRefGoogle Scholar
  73. 73.
    Livnah O, Stura EA, Johnson DL et al. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 A. Science 1996;273:464–471PubMedCrossRefGoogle Scholar
  74. 74.
    Wrighton NC, Balasubramanian P, Barbone FP et al. Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nat. Biotechnol. 1997;15:1261–1265.PubMedCrossRefGoogle Scholar
  75. 75.
    McConnell SJ, Dinh T, Le MH et al. Isolation of erythropoietin receptor agonist peptides using evolved phage libraries. Bio Chem 1998;379:1279–1286.CrossRefGoogle Scholar
  76. 76.
    Kuai L, Wu C, Qiu Q et al. Plasminogen activator inhibitor-1 fused with erythropoietin (EPO) mimetic peptide (EMP) enhances the EPO activity of EMP. J Peptide Res 2000;56:59–62.CrossRefGoogle Scholar
  77. 77.
    Fan Q, Leuther KK, Holmes CP et al. Preclinical evaluation of Hematide, a novel erythropoiesis stimulating agent, for the treatment of anemia. Exp Hematol 2006;34:1303–1311PubMedCrossRefGoogle Scholar
  78. 78.
    Stead RB, Lambert J, Wessels D et al. Evaluation of the safety and pharmacodynamics of Hematide, a novel erythropoietic agent, in a phase 1, double-blind, placebo-controlled, dose-escalation study in healthy volunteers. Blood 2006;108:1830–1834.PubMedCrossRefGoogle Scholar
  79. 79.
    Goldberg J, Jin Q. Ambroise Y et al. Erythropoietin mimetics derived from solution phase combinatorial libraries. J Am Chem Soc 2002;124:544–555.PubMedCrossRefGoogle Scholar
  80. 80.
    Biazzo DE, Motamedi H, Mark DF et al. A high-throughput assay to identify compounds that can induce dimerization of the erythropoietin receptor. Anal Biochem 2000;278:39–45.PubMedCrossRefGoogle Scholar
  81. 81.
    Qureshi SA, Kim RM, Konteatis Z et al. Mimicry of erythropoietin by a nonpeptide molecule. Proc. Natl. Acad Sci USA 1999;96:12156–12161.PubMedCrossRefGoogle Scholar
  82. 82.
    Naranda T. Kaufman RI, Li J et al. Activation of erythropoietin receptor through a novel extracellular binding site. Endocrinology 2002;143:2293–2302.PubMedCrossRefGoogle Scholar
  83. 83.
    Constantinescu SN, Liu X, Beyer W et al. Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO J 1999;18:3334–3317.PubMedCrossRefGoogle Scholar
  84. 84.
    Li JP, Hu HO, Niu QT et al. Cell surface activation of the erythropoietin receptor by Friend spleen focus-forming virus gp55. J. Virol 1995;69:1714–1719.PubMedGoogle Scholar
  85. 85.
    Sharlow ER, Pacifici R, Crouse J et al. Hematopoietic cell phosphatase negatively regulates erythropoietin-induced hemoglobinization in erythroleukemic SKT6 cells. Blood 1997;90:2175–2187PubMedGoogle Scholar
  86. 86.
    Yi T, Zhang J, Miura O et al. Hematopoietic cell phosphatase associates with erythropoietin (Epo) receptor after Epo-induced receptor tyrosine phosphorylation: identification of potential binding sites. Blood 1995;85:87–95.PubMedGoogle Scholar
  87. 87.
    Watowich SS, Xie X, Klingmuller U et al. Erythropoietin receptor mutations associated with familial erythrocytosis cause hypersensitivity to erythropoietin in the heterozygous state. Blood 1999;94:2530–2532PubMedGoogle Scholar
  88. 88.
    Prchal JT, Sokol L. ‘Benign erythrocytosis’ and other familial and congenital polycythemias. Eur J Haematol 1996;57:263–268.PubMedGoogle Scholar
  89. 89.
    de la Chapelle A, Traskelin AL, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci USA 1993;90:4495–4499.PubMedCrossRefGoogle Scholar
  90. 90.
    Tsui FW, Tsui HW. Molecular basis of the motheaten phenotype. Immunol Rev 1994;138:185–206.PubMedCrossRefGoogle Scholar
  91. 91.
    Lankester AC, van Schijndel, GM, van Lier RA Hematopoietic cell phosphatase is recruited to CD22 following B cell antigen receptor ligation. J Biol Chem 1995;270:20305–20308.PubMedCrossRefGoogle Scholar
  92. 92.
    Tapley P, Shevde NK, Schweitzer PA et al. Increased G-CSF responsiveness of bone marrow cells from hematopoietic cell phosphatase deficient viable motheaten mice. Exp Hematol 1997;25:122–131.PubMedGoogle Scholar
  93. 93.
    Nangaku M, Kojima I, Tanaka T et al. Novel drugs and the response to hypoxia: HIF stabilizers and prolyl hydroxylase. Recent Patents Cardiovas Drug Discovery 2006;1:129–139.CrossRefGoogle Scholar
  94. 94.
    Perey MJ, Furlow PW, Beer PA et al. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood 2007;110:2193–2196.CrossRefGoogle Scholar
  95. 95.
    Minamishima YA, Moslehi J, Bardeesy N et al. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 2008;111:3236–3244.PubMedCrossRefGoogle Scholar
  96. 96.
    Gordeuk VR, Sergueeva AI, Miasnikova GY et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia, VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood 2004;103:3924–3932PubMedCrossRefGoogle Scholar
  97. 97.
    Al-Sheikh M, Moradkhani K, Lopez M et al. Disturbance in the HIF-lalpha pathway associated with erythrocytosis: further evidences brought by frameshift and nonsense mutations in the prolyl hydroxylase domain protein 2 (PHD2) gene. Blood Cells Molec Dis 2008;40:160–165CrossRefPubMedGoogle Scholar
  98. 98.
    Katsuoka Y, Beckman B, George WJ et al. Increased levels of erythropoietin in kidney extracts of rats treated with cobalt and hypoxia. Am J Physiol 1983;244:F129–F133.PubMedGoogle Scholar
  99. 99.
    Hirsila M, Koivunen P, Xu L et al. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J 2005;19:1308–1310.PubMedGoogle Scholar
  100. 100.
    Goldwasser E, White WF. Purification of sheep erythropoietin. Fed Proc 1959;18:236.Google Scholar
  101. 101.
    Curtis JR, Goode GC, Herrington J et al. Possible cobalt toxicity in maintenance hemodialysis patients after treatment with cobaltous chloride: a study of blood and tissue cobalt concentrations in normal subjects and patients with terminal and renal failure. Clin Nephrol 1976;5:61–65.PubMedGoogle Scholar
  102. 102.
    Wolf J, Levy IJ. Treatment of sickle cell anemia with cobalt chloride. Arch Intern Med 1954;93:387–396.Google Scholar
  103. 103.
    Shen SC, Homberger F. The anemia of cancer patients and its relation to metastases to the bone marrow. J Lab Clin Med 1951;37:182–198.PubMedGoogle Scholar
  104. 104.
    Barceloux DG. Cobalt. J Toxicol. 1999;37:201–216.Google Scholar
  105. 105.
    Tielemans C, Collart F, Wens R et al Improvement of anemia with deferoxamine in, hemodialysis patients with aluminum-induced bone disease. Clin Nephrol 1985;24:237–241.PubMedGoogle Scholar
  106. 106.
    Davis BA, Porter JB Results of long term iron chelation treatment with deferoxamine. Adv Exper. Med Biol 2002;509:91–125.Google Scholar
  107. 107.
    Hsieh MM, Linde NS, Wynter A et al. HIF prolyl hydroxylase inhibition results in endogenous erythropoietin induction, erythrocytosis, and modest fetal hemoglobin expression in rhesus macaques. Blood 2007;110:2140–2147.PubMedCrossRefGoogle Scholar
  108. 108.
    Naffakh N, Henri A, Villeval JL et al. Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts. Proc Natl Acad Sci USA 1995;92:3194–3198.PubMedCrossRefGoogle Scholar
  109. 109.
    Bohl D, Naffakh N, Heard JM. Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat Med 1997;3:299–305.PubMedCrossRefGoogle Scholar
  110. 110.
    Naffakh N, Pinset C, Montarras D et al. Long-term secretion of therapeutic proteins from genetically modified skeletal muscles. Hum Gene Ther 1996;7:11–21.PubMedCrossRefGoogle Scholar
  111. 111.
    Naffakh N, Danos O. Gene transfer for erythropoiesis enhancement. Mol Med Today 1996;2:343–348.PubMedCrossRefGoogle Scholar
  112. 112.
    Meyer F, Finer M. Gene therapy: progress and challenges. Cell Molec Biol. 2001;47(8):1277–1294.Google Scholar
  113. 113.
    Zhou S, Murphy JE, Escobedo JA et al. Adeno-associated virus-mediated delivery of erythropoietin leads to sustained elevation of hematocrit in nonhuman primates. Gene Ther 1998;5:665–670.PubMedCrossRefGoogle Scholar
  114. 114.
    Chenuaud P, Larcher T, Rabinowitz JE et al. Autoimmune anemia in macaques following erythropoietin gene therapy. Blood 2004;103:3303–3304.PubMedCrossRefGoogle Scholar
  115. 115.
    Dalle B, Payen E, Regulier E et al. Improvement of mouse beta-thalassemia upon erythropoietin delivery by encapsulated myoblasts. Gene Ther 1999;6:157–161.PubMedCrossRefGoogle Scholar
  116. 116.
    Payen E, Bettan M, Henri A et al. Oxygen tension and a pharmacological switch in the regulation of transgene expression for gene therapy. J Gene Med 2001;3:498–504.PubMedCrossRefGoogle Scholar
  117. 117.
    Bohl D, Heard JM. Delivering erythropoietin through genetically engineered cells. J Am Soc Nephrol 2000;11: Suppl-62.Google Scholar
  118. 118.
    Serguera C, Bohl D, Rolland E et al. Control of erythropoietin secretion by doxycycline or mifepristone in mice bearing polymer-encapsulated engineered cells. Hum Gene Ther 1999;10:375–383.PubMedCrossRefGoogle Scholar
  119. 119.
    Ye X, Rivera VM, Zoltick P et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfei. Science 1999;283:88–91.PubMedCrossRefGoogle Scholar
  120. 120.
    Maruyama H, Higuchi N, Nishikawa Y et al. Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Hum Gene Ther 2002;13:455–468.PubMedCrossRefGoogle Scholar
  121. 121.
    Spivak JL, Hogans BB. The in vivo metabolism of recombinant human erythropoietin in the rat. Blood 1989;73:90–99.PubMedGoogle Scholar
  122. 122.
    Dinkelaar RB, Engels EY, Hart AA et al. Metabolic studies on erythropoietin (EP): II. The role of liver and kidney in the metabolism of Ep. Exp Hematol 1981;9:796–803.PubMedGoogle Scholar
  123. 123.
    Fu J-S, Lertora JJL, Brookins J et al. Pharmacokinetics of erythropoietin in intact and anephric dogs. J Lab Clin Med 1988;111:669–676.PubMedGoogle Scholar
  124. 124.
    Breidbach A, Catlin DH, Green GA et al. Detection of recombinant human erythropoietin in urine by isoelectric focusing. Clin Chem 2003;49:901–907.PubMedCrossRefGoogle Scholar
  125. 125.
    Catlin DH, Breidbach A, Elliott S et al. Comparison of the isoelectric focusing patterns of darbepoetin alfa, recombinant human erythropoietin, and endogenous erythropoietin from human urine. Clin Chem 2002;48:2057–2059.PubMedGoogle Scholar
  126. 126.
    Widness JA, Veng-Pedersen P, Schmidt RL et al. In vivo 125I-erythropoietin pharmacokinetics are unchanged after anesthesia, nephrectomy and hepatectomy in sheep. J Pharmacol Exp Ther 1996;279:1205–1210.PubMedGoogle Scholar
  127. 127.
    Jensen JD, Jensen LW, Madsen JK et al. The metabolism of erythropoietin in liver cirrhosis patients compared with healthy volunteers. Eur J Haematol 1995;54:111–116.PubMedCrossRefGoogle Scholar
  128. 128.
    Kindler J, Eckardt KU, Ehmer B et al. Single-dose pharmacokinetics of recombinant human erythropoietin in patients with various degrees of renal failure. Nephrol Dialy Transplant 1989;4:345–349.Google Scholar
  129. 129.
    Macdougall IC, Roberts DE, Coles GA et al. Clinical pharmacokinetics of epoetin (recombinant human erythropoietin). Clin Pharmacokinetics 1991;20:99–113CrossRefGoogle Scholar
  130. 130.
    Yoon WH, Park SJ, Kim IC et al. Pharmacokinetics of recombinant human erythropoietin in rabbits and 3/4 nephrectomized rats. Res Commun Mol Pathol. Pharmacol 1997;96:227–240.PubMedGoogle Scholar
  131. 131.
    Bao H, Jacobs-Helber SM, Lawson AE et al. Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subelone (HCD57-SREI cells). Blood 1999;93:3757–3773.PubMedGoogle Scholar
  132. 132.
    Fraser JK, Lin FK, Berridge MV. Expression of high affinity receptors for erythropoietin on human bone marrow cells and on the human erythroleukemic cell line HEL. Exp Hematol. 1988;16:836–842.PubMedGoogle Scholar
  133. 133.
    Gross AW, Lodish HF. Cellular trafficking and degradation of erythropoietin and Novel Erythropoiesis Stimulating Protein (NESP). J Biol Chem 2006;281:2024–2032.PubMedCrossRefGoogle Scholar
  134. 134.
    Chapel S, Veng-Pedersen P, Hohl RJ et al. Changes in erythropoietin pharmacokinetics following busulfan-induced bone marrow ablation in sheep: evidence for bone marrow as a major erythropoietin elimination pathway. J Pharmacol Exp Ther 2001;298:820–824.PubMedGoogle Scholar
  135. 135.
    Veng-Pedersen P, Chapel S, Al-Huniti NH et al. Pharmacokinetic tracer kinetics analysis of changes in erythropoietin receptor population in phlebotomy-induced anemia and bone marrow ablation. Biopharm Drug Disposition 2004;25:149–156.CrossRefGoogle Scholar
  136. 136.
    Hartley C, Elliott S, Begley CG et al. Kinetics of haematopoietic recovery after dose-intensive chemo/radiotherapy in mice: optimized erythroid support with darbepoetin alpha. Br J Haematol 2003;122:623–636.PubMedCrossRefGoogle Scholar
  137. 137.
    Glaspy J, Henry D, Patel R et al. Effects of chemotherapy on endogenous erythropoietin levels and the pharmacokinetics and erythropoietic response of darbepoetin alfa: a randomised clinical trial of synchronous versus asynchronous dosing of darbepoetin alfa. Eur J Cancer 2005;41:1140–1149PubMedCrossRefGoogle Scholar
  138. 138.
    Agoram B, Molineux G, Jang G et al. Effects of altered receptor binding activity on the clearance of erythropoiesis-stimulating proteins: a minor role of erythropoietin receptor-mediated pathways. Nephrol Dial Transplant 2006;21:303–304.Google Scholar
  139. 139.
    Flaharty KK. Clinical pharmacology of recombinant human erythropoietin (r-HuEPO). Pharmacotherapy 1990;10:9S–14S.PubMedGoogle Scholar
  140. 140.
    Porter CJ, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci 2000;89:297–310.PubMedCrossRefGoogle Scholar
  141. 141.
    Morlock M, Kissel T, Li YX et al. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in vitro release properties. J Control Release 1998;56:105–115.PubMedCrossRefGoogle Scholar
  142. 142.
    Pistel KF, Bittner B, Koll H et al. Biodegradable recombinant human erythropoietin loaded microspheres prepared from linear and star-branched block copolymers; influence of encapsulation technique and polymer composition on particle characteristics. J Control Release 1999;59:309–325PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Steven G. Elliott
    • 1
  1. 1.Amgen Inc.Thousand OaksUSA

Personalised recommendations