Studies of erythropoiesis and the discovery and cloning of recombinant human erythropoietin

  • Mary Ann Foote
Part of the Milestones in Drug Therapy book series (MDT)


Patients who are anemic because of chronic kidney disease, cancer, arthritis, or chemotherapy or radiation therapy often report fatigue [1, 2, 3, 4, 5, 6]. Before the introduction of recombinant human erythropoietin (rHuEPO), anemia and its sequelae fatigue were treated with red blood cell transfusion, androgen stimulation of red blood cell production, and/or iron supplementation, among other treatments [7]. While effective in increasing red blood cell counts, both transfusions and androgen therapy have inherent risks [8]. Transfusions of red blood cells can be complicated by blood-borne pathogens, iron overload, immunologic consequences, and lack of or delayed hemoglobin response. Transfusions often improve but do not correct anemia and usually must be given frequently, and androgen therapy can cause viralization or abnormal liver function. rHuEPO is an ideal therapy because it mimics the action of the endogenous hormone by stimulating the production of red blood cells. Patients with chronic kidney disease are unable to produce adequate amounts of endogenous erythropoietin (EPO) to stimulate red blood cell production. Patients with cancer often have damaged bone marrow, with or without the insult of chemotherapy, that does not completely respond to the endogenous hormone.


Chronic Kidney Disease Recombinant Human Erythropoietin Androgen Therapy Putative Amino Acid Sequence Erythropoietin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eschbach JW, Abdulhadi MH, Browne JK, Delano BG, Downing MR, Egrie JC, Evans RW, Friedman EA, Graber SE, Haley NR et al. (1989) Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Intern Med 111: 992–1000PubMedGoogle Scholar
  2. 2.
    Volgelzang NJ, Brietbart W, Cella D, Curt GA, Groopman JE, Horning SJ, Itri LM, Johnson DH, Scherr SL, Portenoy RK (1997) Patient, caregiver, and oncologist perceptions of cancer-related fatigue: Results of tripart assessment survey. The Fatigue Coalition. Semin Hematol 34: 4–12Google Scholar
  3. 3.
    Demetri GD, Kris M, Wade J, Degos L, Cella D (1998) Quality-of-life benefit in chemotherapy patients treated with epoetin alfa is independent of disease response of tumor type: Results from a prospective community oncology study. Procrit Study Group. J Clin Oncol 16: 3412–3425PubMedGoogle Scholar
  4. 4.
    Glaspy J, Bukowski R, Steinberg D, Taylor C, Tchekmedyian S, Vadhan-Raj S (1997) Impact of therapy with epoetin alfa on clinical outcomes in patients with nonmyeloid malignancies during cancer chemotherapy in community oncology practice. Procrit Study Group. J Clin Oncol 15: 1218–1234PubMedGoogle Scholar
  5. 5.
    Peeters HR, Jongen-Lavrencic M, Bakker CH, Vreugdenhil G, Breedveld FC, Swaak AJ (1999) Recombinant human erythropoietin improves health-related quality of life in patients with rheumatoid arthritis and anaemia of chronic disease; utility measures correlate strongly with disease activity measures. Rheumatol Int 18: 201–206PubMedCrossRefGoogle Scholar
  6. 6.
    Gabrilove JL, Cleeland CS, Livingston RB, Sarokhan B, Winer E, Einhorn LH (2001) Clinical evaluation of once-weekly dosing of epoetin alfa in chemotherapy patients: Improvements in hemoglobin and quality of life are similar to three-times-weekly dosing. J Clin Oncol 19: 2875–2882PubMedGoogle Scholar
  7. 7.
    Foote MA, Colowick A, Goodkin DA (2002) Basics of anatomy and physiology: Red blood cells and anemia. AMWA J 17: 13–20Google Scholar
  8. 8.
    Watson AJ (1989) Adverse effects of therapy for the correction of anemia in hemodialysis patients. Sem Nephrol 9: 30–34Google Scholar
  9. 9.
    Bright R (1836) Cases and observations illustrative of renal disease accompanied with the secretion of albuminous urine. Guy’s Hospital Reports 1: 338–379Google Scholar
  10. 10.
    Jourdanet D (1863) De l’anemie des altitudes et de l’anemie en general dans ses rapports avec la pression del l’atmopshere. Balliere (Paris) 44Google Scholar
  11. 11.
    Viault F (1891) Sur l’augmentation considerable du nombre des globules rouges dans le sange chez les habitants des haut plateaux de l’Amerique du Sud. CR Acad Press (Paris) 111: 917–918Google Scholar
  12. 12.
    Viault F (1891) Sur la quantité d’oxygen contenue dans le sang des animaux des hauts pleateaux de L’Amerique du Sud. CR Acad Sci (Paris) 112: 295–298Google Scholar
  13. 13.
    Muntz A (1891) De l’enrichissement du sang en hemoglobine, suivant les conditions d’existence. CR Acad Sci (Paris) 112: 298–301Google Scholar
  14. 14.
    Meischer F (1893) Ueber die Beziehungen zwischen Meereshöhe und Beschaffenheit des Blutes. Korresp-Bl Schweiz Arz 23: 809–830Google Scholar
  15. 15.
    Meischer F (1893) Bemerkungen über eine verbesserte Form der Mischipette und ihren Einfluss auf die Genauigkeit der Blutkörperzählung. Korresp-Bl Schweiz Arz 23: 830–832Google Scholar
  16. 16.
    Carnot P (1906) Sur le mecanisme de l’hyperglobulie provoquée par le serum d’animaux en renovation sanguine. CR Acad Sci (Paris) 111: 344–346Google Scholar
  17. 17.
    Carnot P (1906) Sur l’activite cytopoietique du sang et des organs regeneres au cours des regenerations viserales. CR Biol (Paris) 111: 463–465Google Scholar
  18. 18.
    Carnot P, Deflandre C (1906) Sur l’activité cytopoietique du sang et des organs regeneres au cours des regeneration du sang. CR Acad Sci (Paris) 143: 432–435Google Scholar
  19. 19.
    Gibelli C (1911) Uber den wert des serums anamisch gemachten tiere bei der regernation des blutes. Arch Exp Path Pharmark 65: 284–302CrossRefGoogle Scholar
  20. 20.
    Giribaldi G (1920) Sul potere emopoietico del siero di sangue di animali resi anemici con iniezioni sottocutanee di glicerina. Biochim Terap Sper 7: 52–65Google Scholar
  21. 21.
    Forster J (1924) Luftverdünnung und Blutregeneration durch “Hemopoietine”. Biochem Z 145: 309–317Google Scholar
  22. 22.
    Sandor G (1932) Über die blutbildene Wirkung des Serums von Tieren, die in verdünnter Luft gehalten wurden. Z Ges Exp Med 82: 633–646CrossRefGoogle Scholar
  23. 23.
    Thorling EB (1969) The history on the early theories of humoral regulation of the erythropoiesis. Dan Med Bull 16: 159–164PubMedGoogle Scholar
  24. 24.
    Erslev A (1952) Humoral regulation of red cell production. Blood 8: 349–357Google Scholar
  25. 25.
    Jacobson LO, Goldwasser E, Fried W, Plzak L (1957) Role of the kidney in erythropoiesis. Nature 179: 633–634PubMedCrossRefGoogle Scholar
  26. 26.
    Congote LF (1977) Regulation of fetal liver erythropoiesis. J Steroid Biochem 8: 423–428PubMedCrossRefGoogle Scholar
  27. 27.
    Mirand EA, Prentice TC (1957) Presence of plasma erythropoietin in hypoxic rats with and without kidneys or spleen. Proc Soc Exp Biol Med 96: 49–51PubMedGoogle Scholar
  28. 28.
    Koury MJ, Bondurant MC, Graber SE, Sawyer ST (1988) Erythropoietin messenger RNA levels in developing mice and transfer of 125I-erythropietin by the placenta. J Clin Invest 82: 154–159PubMedCrossRefGoogle Scholar
  29. 29.
    Erslev AJ, Caro J, Kanusu E, Silver R (1980) Renal and extrarenal erythropoietin production in anemic rats. Br J Haematol 45: 65–72PubMedCrossRefGoogle Scholar
  30. 30.
    Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, Henn V, Yonekawa Y, Bauer C, Gassmann M (1996) Erythropoietin gene expression in human, monkey, and murine brain. Eur J Neurosci 8: 666–676PubMedCrossRefGoogle Scholar
  31. 31.
    Espada J, Gutnisky A (1970) A new method for concentration of erythropoietin from human urine. Biochem Med 3: 475–484PubMedCrossRefGoogle Scholar
  32. 32.
    Espada J, Langton AA, Dorado M (1972) Human erythropoietin: Studies on purity and partial characterization. Biochim Biophys Acta 285: 427–435PubMedGoogle Scholar
  33. 33.
    Goldwasser E, Kung CKH (1971) Purification of erythropoietin. Proc Natl Acad Sci USA 68: 697–698PubMedCrossRefGoogle Scholar
  34. 34.
    Goldwasser E, Gross M (1975) Erythropoietin: Assay and study of its mode of action. Methods Enzymol 37: 109–121PubMedCrossRefGoogle Scholar
  35. 35.
    Miyake T, Kung CK, Goldwasser E (1977) Purification of human erythropoietin. J Biol Chem 252: 5558–5564PubMedGoogle Scholar
  36. 36.
    Sue JM, Sytkowski AJ (1983) Site-specific antibodies to human erythropoietin directed towards the NH2-terminal region. Proc Natl Acad Sci USA 80: 3651–3655PubMedCrossRefGoogle Scholar
  37. 37.
    Yanagawa S, Hirade K, Ohnota H, Saski R, Chiba H, Ueda M, Goto M (1984) Isolation of human erythropoietin with monoclonal antibodies. J Biol Chem 259: 2707–2710PubMedGoogle Scholar
  38. 38.
    Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 76: 106–110PubMedCrossRefGoogle Scholar
  39. 39.
    Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z et al. (1985) Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA 82: 7580–7582PubMedCrossRefGoogle Scholar
  40. 40.
    Lin FK, Lin CH, Lai PH, Browne JK, Egrie JC, Smalling R, Fox GM, Chen KK, Castro M, Suggs S (1986) Monekey erythropoietin gene: Cloning, expression and comparison with the human erythropoietin gene. Gene 44: 201–209PubMedCrossRefGoogle Scholar
  41. 41.
    Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, Seehra J, Jones SS, Hewick R, Fritsch EF et al. (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313: 806–810PubMedCrossRefGoogle Scholar
  42. 42.
    McDonald JD, Lin FK, Goldwasser E (1986) Cloning, sequencing, and evolutionary analysis of the mouse erythropoietin gene. Mol Cell Biol 6: 842–848PubMedGoogle Scholar
  43. 43.
    Shoemaker CB, Mitsock LD (1986) Murine erythropoietin gene: cloning, expression, and human gene homology. Mol Cell Biol 6: 849–858PubMedGoogle Scholar
  44. 44.
    Nagao M, Suga H, Okano M, Masuda S, Narita H, Ikura K, Sasaki R (1992) Nucleotide sequence of rat erythropoietin. Biochim Biophys Acta 1171: 99–102PubMedGoogle Scholar
  45. 45.
    Wen D, Boissel JP, Tracy TE, Gruninger RH, Mulcahy LS, Czelusniak J, Goodman M, Bunn HF (1993) Erythropoietin structure-function relationships: high degree of sequence homology among mammals. Blood 82: 1507–1516PubMedGoogle Scholar
  46. 46.
    Pearson PL, Smith TP, Sonstegard TS, Klemcke HG, Christenson RK, Vallet JL (2000) Porcine erythropoietin receptor: molecular cloning and expression in embryonic and fetal liver. Domest Anim Endocrinol 19: 25–38PubMedCrossRefGoogle Scholar
  47. 47.
    Fu P, Evans B, Lim GB, Mortiz K, Wintour EM (1993) The sheep erythropoietin gene: Molecular cloning and effect of hemorrhage on plasma erythropoietin and renal/liver messenger RNA in adult sheep. Mol Cell Endocrinol 93: 107–116PubMedCrossRefGoogle Scholar
  48. 48.
    Suliman HB, Majiwa PA, Feldman BF, Mertens B, Logan-Henfrey L (1996) Cloning of a cDNA encoding bovine erythropoietin and analysis of its transcription in selected tissues. Gene 171: 275–280PubMedCrossRefGoogle Scholar
  49. 49.
    Davis JM, Arakawa T, Strickland TW, Yphantis DA (1987) Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells. Biochemistry 26: 2633–2638PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Mary Ann Foote
    • 1
  1. 1.MA Foote AssociatesWestlake VillageUSA

Personalised recommendations