Erythropoiesis—genetic abnormalities

  • Josef T. Prchal
  • Xylina T. Gregg
Part of the Milestones in Drug Therapy book series (MDT)


We review genetic mechanisms altering erythropoiesis that lead to either an increased red cell mass (polycythemia/erythrocytosis) or decreased red cell mass (anemia). Since polycythemia is often and inconsistently referred to by an alternative term, erythrocytosis, and, as no consensus on usage has been reached, we refer to the individual entities by the term used in the original description. Anemias are far more common than polycythemic states, and most are due to acquired nutritional, autoimmune, and toxic causes; or to inherited globin, cytoskeleton, and red cell enzyme mutations. These causes result in hemolytic, microcytic/hypochromic, hypoproliferative, or inefficient erythropoiesis anemia phenotypes. In this review, we concentrate on the few well-delineated germline or somatic mutations disturbing normal control of erythropoiesis that cause a disease phenotype either in humans or in mouse.


Single Nucleotide Polymorphism Polycythemia Vera Erythroid Progenitor JAK2 V617F Proline Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruchova H, Yoon D, Agarwal AM et al. Regulated expression of micro RNAs in normal and polycythemia vera erythropoiesis. Exp Hematol 2007;35:1657–1667.PubMedCrossRefGoogle Scholar
  2. 2.
    Gregg XT, Prehal JT. Recent advances in the molecular biology of congenital polycythemias and polycythemia vera. Curr Hematol Rep 2005;4:238–242.PubMedGoogle Scholar
  3. 3.
    Spivak J. Polycythemia vera: myths, mechanisms, and management. Blood 2002;100:4272–4290.PubMedCrossRefGoogle Scholar
  4. 4.
    Prchal JF, Axelrad AA. Bone-marrow responses in polycythemia vera. N Engl J Med 1974;290:1382 (letter).PubMedGoogle Scholar
  5. 5.
    James C, Ugo V, Le Couedic JP et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434:1144–1148.PubMedCrossRefGoogle Scholar
  6. 6.
    Kralovics R, Guan Y, Prehal JT. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 2002;30:229–236.PubMedCrossRefGoogle Scholar
  7. 7.
    Jelinek J, Oki Y, Gharibyan V et al. JAK2 mutation 1849G>T is rare in acute leukemia as but can be found in CMML, Philadelphia-chromosome negative CML and megakary ocytic leukemia. Blood 2005;106:3370–3373.PubMedCrossRefGoogle Scholar
  8. 8.
    Levine RL, Gilliland DG. JAK-2 mutations and their relevance to myeloproliferative disease. Curr Opin Hematol 2007;14:43–47.PubMedCrossRefGoogle Scholar
  9. 9.
    Kralovics R, Teo SS, Li S et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006;108:1377–1380.PubMedCrossRefGoogle Scholar
  10. 10.
    Nussenzveig RH, Swierczek SI, Jelinek J et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol 2007;35:32–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Bellanné-Chantelot C, Chaumarel I, Labopin M et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families. Blood 2006;108:346–352.PubMedCrossRefGoogle Scholar
  12. 12.
    Rumi E, Passamonti F, Pietra D et al. JAK2 (V617F) as an acquired somatic mutation and a secondary genetic event associated with disease progression in familial myeloproliferative disorders. Cancer 2006;107:2206–2211.PubMedCrossRefGoogle Scholar
  13. 13.
    Scott LM, Tong W, Levine RL et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356:459–468.PubMedCrossRefGoogle Scholar
  14. 14.
    Pietra D, Li S, Brisci A et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative m myeloproliferative disorders. Blood 2008;111:1686–1689.PubMedCrossRefGoogle Scholar
  15. 15.
    Kralovics R, Stockton DW, Prchal JT. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood 2003;102:3793–3796.PubMedCrossRefGoogle Scholar
  16. 16.
    Kralovics R, Skoda RC. Molecular pathogenesis of Philadelphia chromosome negative myeloproliferative disorders. Blood Rev 2005;19:1–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Prehal J, Crist W, Goldwasser E et al. Autosomal dominant polycythemia. Blood 1985;66:1208–1214.Google Scholar
  18. 18.
    Juvonen E, Ikkala E, Fyhrquist F et al. Autosomal dominant erythrocytosis caused by incresed sensitivity to erythropoietin. Blood 1991;78:3066–3069.PubMedGoogle Scholar
  19. 19.
    Emanuel P, Eaves C, Broudy V et al. Familial and congenital polycythemia in three unrelated families. Blood 1992;79:3019–3030.PubMedGoogle Scholar
  20. 20.
    Forget B, Degar BA, Arcasoy MO. Familial polycythemia due to truncations of the erythropoiet in receptor. Trans Am Clin Climatol Assoc 2000;111:38–44.PubMedGoogle Scholar
  21. 21.
    Queisser W, Heim ME, Schmitz JM et al. Idiopathic familial erythrocytosis. Report on a family with autosomal dominant inheritance. Dtsch Med Wochenschr 1988;113:851–856.PubMedCrossRefGoogle Scholar
  22. 22.
    Prehal J, Semenza GL, Prehal J et al. Familial polycythemia. Science 1995;268:1831–1832.CrossRefGoogle Scholar
  23. 23.
    Sokol L, Kralovies R, Hubbell GL. A novel erythropoietin receptor mutation associated with primary familial polycythemia and severe cardiovascular and peripheral vascular disease. Blood 2001;98: [abstract 937].Google Scholar
  24. 24.
    Winkelmann J, Penny L, Deaven L et al. The gene for the human erythropoietin receptor. Analysis of the coding sequence and assignment to chromosome 19q. Blood:1990;76:24.PubMedGoogle Scholar
  25. 25.
    D’Andrea A, Yoshimura A, Youssoufian H et al. The cytoplasmic region of the erythropoietin receptor contains non-overlapping positive and negative growth-regulatory domains. Mol Cell Biol 1991;11:1980–1987.PubMedGoogle Scholar
  26. 26.
    Yoon D, Watowich SS. Hematopoietic cell survival signals are elicited through non-tyrosine-containing sequences in the membrane-proximal region of the erythropoietin receptor (EPOR) by a Stat 5-dependent pathway. Exp Hematol 2003;31: 1310–1316.PubMedCrossRefGoogle Scholar
  27. 27.
    Gordeuk VR, Stockton DW, Prehal JT. Congenital polycythemias/erythrocytoses. Haematologica 2005;90:109–116.PubMedGoogle Scholar
  28. 28.
    Prehal JT. Pathogenetic mechanisms of polycythemia vera and congenital polycythemic disorders. Sem in Hematol 2001;38:10–20.Google Scholar
  29. 29.
    Kralovics R, Sokol L, Prehal JT. Absence of polycythemia in a child with a unique erythropoietin receptor mutation in a family with autosomal dominant primary polycythemia. J Clin Invest 1998;102:124–129.PubMedCrossRefGoogle Scholar
  30. 30.
    Kralovies R, Prehal JT. Genetic heterogeneity of primary familial and congenital polycythemia. Am J Hematol 2001;68:115–121.CrossRefGoogle Scholar
  31. 31.
    Jedlickova K, Stockton DW, Prehal JT. Possible primary familial and congential polycythemia locus at 7q22.1-7q22.2. Blood Cells Mol Dis 2003;31:327–331.PubMedCrossRefGoogle Scholar
  32. 32.
    Percy MJ, McMullin MF, Roques AW et al. Erythrocytosis due to a mutation in the erythropoietin receptor gene. Br J Haematol 1998;100:407–410.PubMedCrossRefGoogle Scholar
  33. 33.
    Wajcman H, Galacteros F. Hemoglobins with high oxygen affinity leading to erythrocytosis. New variants and new concepts. Hemoglobin 2005;29:91–106.PubMedCrossRefGoogle Scholar
  34. 34.
    Agarwal N, Mojica-Henshaw MP, Simmons ED et al. Familial polycythemia caused by a novel mutation in the beta globin gene: essential role of P50 in evaluation of familial polycythemia. Int J Med Sci 2007;4:232–236.PubMedGoogle Scholar
  35. 35.
    Labie D, Leroux JP, Najman A et al. Familial diphosphoglyceratetutase deficiency. Influence on the oxygen affinity curves of hemoglobin. FEBS Lett 1970;9:37–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Gregg X, Prehal JT. Red cell enzymopathies. In: Hoffman RB, ed. Hematology: Basic Principles and Practice. 5th ed; 2007.Google Scholar
  37. 37.
    Sergeyeva A, Gordeuk VR, Tokarev YN et al. Congenital polycythemia in chuvashia. Blood 1997;89:2148–2154.PubMedGoogle Scholar
  38. 38.
    Ang S, Chen H, Gordeuk VR et al. Endemic polycythemia in Russia: mutation in the VHL gene. Blood Cells Mol Dis 2002;28:57–62.PubMedCrossRefGoogle Scholar
  39. 39.
    Ang S, Chen H, Hirota K et al. Disruption of oxygen homeostasis underlies congenital Chuvash polyeythemia. Nat Genet 2002;32:614–621.PubMedCrossRefGoogle Scholar
  40. 40.
    Gordeuk VR, Sergueeva AI, Miasnikova GY et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood 2004;103:3924–3924.PubMedCrossRefGoogle Scholar
  41. 41.
    Pastore Y, Jelinek J, Ang S et al. Mutations in the VHL gene in sporadic apparently congenital polycythemia. Blood 2003;101:1591–1595.PubMedCrossRefGoogle Scholar
  42. 42.
    Pastore Y, Jedlickova K, Guan Y et al. Mutations of von Hippel-Lindau tumor-suppressor gene and congenital polycythemia. Am J Hum Genet 2003;73:412–419.PubMedCrossRefGoogle Scholar
  43. 43.
    Percy M, McMullin MF, Jowitt SN et al. Chuvash-type congenital polycy themia is four families of Asian and Western European ancestry. Blood 2003;102:1097–1099.PubMedCrossRefGoogle Scholar
  44. 44.
    Perrotta S, Nobili B, Ferraro M et al. Von Hippel-Lindau-dependent polycythemia is endemic on the island of Ischia: identification of a novel cluster. Blood 2006;107:514–519.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu E, Percy MJ, Amos CI et al. The worldwide distribution of the VHL 598C>T mutation indicates a single founding event. Blood 2004;103:1937–1940.PubMedCrossRefGoogle Scholar
  46. 46.
    Cario H, Schwarz K, Jorch N et al. Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene and VHL haplotype analysis in patients with presumable congenital erythrocytosis. Haematologica 2005;90:19–24.PubMedGoogle Scholar
  47. 47.
    Friedrich C. Genotype-phenotype correlation in von Hippel-Lindau syndrome. Hum Mol Genet 2001;10:763–767.PubMedCrossRefGoogle Scholar
  48. 48.
    Maher E, Webster AR, Richards FM et al. Phenotypic expression in von Hippel-Lindan disease: correlations with germline VHL gene mutation. J Med Genet 1996;33:328–332.PubMedCrossRefGoogle Scholar
  49. 49.
    Maher E. Von Hippel-Lindau disease. Curr. Mol Med 2004;4:833–842.Google Scholar
  50. 50.
    Clifford S, Cockman ME, Smallwood AC et al. Contrasting effects on HIF-1 alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 2001;10:1029–1038.PubMedCrossRefGoogle Scholar
  51. 51.
    Kondo K, Kleo J, Nakamura E et al. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002;1:237–246.PubMedCrossRefGoogle Scholar
  52. 52.
    Turner K, Moore JW, Jones A et al. Expression of hypoxia inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res 2002;62:2957–1961.PubMedGoogle Scholar
  53. 53.
    Bento M, Chang KT, Guan Y et al. Congenital polycythemia with homozygous and heterozygous mutations of von Hippel-Lindau gene: five new Caucasian patient. Haematologica 2005;90:128–129.PubMedGoogle Scholar
  54. 54.
    Percy MJ, Zhao Q, Flores A et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostatis. Proc Nalt Acad Sci USA 2006;103:654–659.CrossRefGoogle Scholar
  55. 55.
    Percy MJ, Furlow PW, Lucas GS et al. A gain-of function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med 2008;358:162–168.PubMedCrossRefGoogle Scholar
  56. 56.
    Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 2006;59:15–26.PubMedCrossRefGoogle Scholar
  57. 57.
    Semenza GL, Koury ST, Nejfelt MK et al. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci USA 1991;88:8725–8729.PubMedCrossRefGoogle Scholar
  58. 58.
    Boutin AT, Weidemann A, Fu Z et al. Epidermal sensing of oxygen is essential for systemic hypoxic response. Cell 2008;133:223–234.PubMedCrossRefGoogle Scholar
  59. 59.
    Maran J, Jedlickova K, Stockton D et al. Finding the novel molecular defect in a family with high erythropoietin autosomal dominant polycythemia. Blood 2003;102:162b.Google Scholar
  60. 60.
    Haferlach T, Bacher U, Haferlach C et al. Insight into the molecular pathogenesis of myeloid malignancies. Curr Opin Hematol 2007;14:90–97.PubMedCrossRefGoogle Scholar
  61. 61.
    Pellagatti A, Hellström-Lindberg E, Giagounidis et al. Haploinsufficiency of RPS14 in 5q-syndrome is associated with deregulation of ribosomal-and translation-related genes. Br J Haematol 2008;142:57–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Mohamedali A, Gäken J, Twine NA et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood 2007;110:3365–3373.PubMedCrossRefGoogle Scholar
  63. 63.
    Gondek LP, Dunbar AJ, Szpurka H et al. SNP uniparental disomy and cryptic chromosomal abnormalities in MDS/MPD-U and MPD. PLoS ONE 2007;2:e1225.PubMedCrossRefGoogle Scholar
  64. 64.
    Angelillo-Scherrer A, Burnier L, Lambrechts D et al. Role of Gas6 in erythropoiesis and anemia in mice. J Clin Invest 2008;118:583–596.PubMedGoogle Scholar
  65. 65.
    Gregg Semenza, personal communication, May 2008.Google Scholar
  66. 66.
    Lemke G, Lu Q. Macrophage regulation by Tyro 3 family receptors. Curr Opin Immunol. 2003;15:31–36.PubMedCrossRefGoogle Scholar
  67. 67.
    Papadaki HA, Kritikos HD, Gemetzi C et al. Bone marrow progenitor cell reserve and function and stromal cell function are defective in rheumatoid arthritis: evidence for a tumor necrosis factor alpha-mediated effect. Blood 2002;99:1610–1619.PubMedCrossRefGoogle Scholar
  68. 68.
    Kasturi KN, Mayer R, Bona CA et al. Germline V genes encode viable motheaten mouse autoantibodies against thymocytes and red blood cells. J Immunol 1990;145:2304–2311.PubMedGoogle Scholar
  69. 69.
    Lyons BL, Lynes MA, Burzenski L et al. Mechanisms of anemia in SHP-1 protein tyrosine phosphatase-deficient “viable motheaten” mice. Exp Hematol 2003;31:234–243.PubMedCrossRefGoogle Scholar
  70. 70.
    Phillips JD, Steensma DP, Pulsipher MA et al. Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood 2007;109:2618–2621.PubMedCrossRefGoogle Scholar
  71. 71.
    Sandoval H, Thiagarajan P, Dasgupta SK et al. Essential role for Nix in autophagic maturation of erythroid cells. N. Nature 2008; [Epub ahead of print], PMID: 18454133.Google Scholar
  72. 72.
    Sathyanarayana P, Menon MP, Bogacheva O et al. Erythropoietin modulation of podocalyxin and a proposed erythroblast niche. Blood 2007;110:509–518.PubMedCrossRefGoogle Scholar
  73. 73.
    Doyonnas R, Kershaw DB, Duhme C et al. Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med 2001:194:13–27.PubMedCrossRefGoogle Scholar
  74. 74.
    Mims MP, Guan Y, Priwitzerova M et al. Identification of a human mutation of DMT1 in a patient with microcytic anemia and ironooverload. Blood 2005;105:1337–1342.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Josef T. Prchal
    • 1
  • Xylina T. Gregg
    • 2
  1. 1.University of UtahSalt Lake CityUSA
  2. 2.Utah Cancer SpecialistsSalt Lake CityUSA

Personalised recommendations