Abuse of recombinant erythropoietins and blood products by athletes

  • Don H. Catlin
  • Caroline K. Hatton
Part of the Milestones in Drug Therapy book series (MDT)


Ever since the beginning of recorded time, there has been evidence that men experiment with performance enhancement. In ancient times, medicinal plants were used for doping. Now sport is coping with drugs developed with recombinant-DNA technology and genetic manipulation is being discussed.


Darbepoetin Alfa Recombinant Human Erythropoietin International Olympic Committee Recombinant Erythropoietin Union Cycliste Internationale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gordon B. Grecian athletic training in the third century (AD). Ann Med History 1935;6:513–519Google Scholar
  2. 2.
    Beckett AH. Cowan DA. Misuse of drugs in sport. Br J Sports Med 1979;12:185–194.CrossRefGoogle Scholar
  3. 3.
    Boje O. Doping: A study of the means employed to raise the level of performance in sport. Bull of the Health Organisation, League Nations 1939;8:439–469.Google Scholar
  4. 4.
    Committee on the Judiciary — United States Senate. Proper and improper use of drugs by athletes. U.S. Government Printing Office, Washington, DC, 1973.Google Scholar
  5. 5.
    Catlin DH, Hatton CK. Use and abuse of anabolic and other drugs for athletic enhancement. Adv Intern Med 1991;36:399–424.PubMedGoogle Scholar
  6. 6.
    Catlin DH, Murray TH. Performance-enhancing drugs, fair competition, and Olympic sport. JAMA 1996;276:231–237.PubMedCrossRefGoogle Scholar
  7. 7.
    Kruse P, Ladefoged J, Nielsen U et al. Beta-blockade used in precision sports: effect on pistol shooting performance. J Appl Physiol 1986;61:417–420.PubMedGoogle Scholar
  8. 8.
    Dirix A. Medical Guide Blackwell Scientific Publication, International Olympic committee, Lausanne, Switzerland, 1992.Google Scholar
  9. 9.
    Catlin DH, Fitch KD, Ljungqvist A. Medicine and Science in the Fight Against Doping is Sports. J Intern Med 2008;264:95–98.CrossRefGoogle Scholar
  10. 10.
    McClaren RH Introducing the Court of Arbitration for Sport: the ad hoc division at the Olympic Games. Marquette Sports Law 2001;12:514–542.Google Scholar
  11. 11.
    IOC. Olympic Movement Anti-Doping Code. http://www.olympic.org.Lausanne, Switzerland, International Olympic Committee. (Accessed 1 October 2002)Google Scholar
  12. 12.
    Elliott S. Erythropoiesis-stimulating agents and other methods to enhance oxygen transport. Br J Pharmacol 2008;154:529–541.PubMedCrossRefGoogle Scholar
  13. 13.
    Segura J, Pascual JA, Gutierrez-Gallego R. Procedures for monitoring recombinant erythropoietin and analogues in doping control. Anal Bioanal Chem 2007388:1521–1529.PubMedCrossRefGoogle Scholar
  14. 14.
    Combe C, Tredree RL, Schellekens H. Biosimilar epoetins: an analysis based on recently implemented European medicines evaluation agency guidelines on comparability of biopharmaceutical proteins. Pharmacotherapy 2005;25:954–962.PubMedCrossRefGoogle Scholar
  15. 15.
    Hatton C. The night Olympic Team — Fighting to Keep Drugs out of the Games. Boyds Mills Press, Honesdale, PA, 2008.Google Scholar
  16. 16.
    Higdon H. Blood-doping among endurance athlete. Am Med News 1985;39–41.Google Scholar
  17. 17.
    Cramer RB. Olympic cheating: the inside story of illicit doping and the US cycling team Rolling Stone 1985;25–30.Google Scholar
  18. 18.
    Klein HG Blood transfusion and athletics. Games people play. N Engl J Med 1985;312:854–856.PubMedGoogle Scholar
  19. 19.
    Gatlin LD. Christian Science Monitor 1998;22:18.Google Scholar
  20. 20.
    Adamson JW, Vapnek D. Recombinant erythropoietin to improve athletic performance. [letter] N Engl J Med 1991;324:698–699.PubMedGoogle Scholar
  21. 21.
    Fisher LM. Stamina-building drug linked to athletes’ deaths. New York Times, 22. 5–19-1991.Google Scholar
  22. 22.
    Swift EM. Drug pedaling. Sports Illustrated, 60–65. 7–5-1999.Google Scholar
  23. 23.
    Jarvis CA. Tour de Farce. Br. J Sports Med 1999;33:142–143.PubMedGoogle Scholar
  24. 24.
    A Sport in Shame. Sports Illustrated, 28–33. 7–27-1998.Google Scholar
  25. 25.
    Scarpino V, Arrigo A, Benzi G et al Evaluation of prevalence of “doping” among Italian at hletes. Lancet 1990;336:1048–1050.PubMedCrossRefGoogle Scholar
  26. 26.
    World Anti-Doping Agency: www.WADA-AMA.org. 2008 (Accessed, 16 June 2008)Google Scholar
  27. 27.
    Mohammad Mourit tests positive for EPO. Chicago Tribune; 2002.Google Scholar
  28. 28.
    Court of Arbitration for Sport. Roland Meier v. Swiss Cycling. CAS 2001/A/345 Meier v/Swiss Cycling, Lausanne, Switzerland, Court of Arbitration for Sport. (Accessed 27 January 2002)Google Scholar
  29. 29.
    Court of Arbitration for Sport. Union Cycliste Internationale (UCI) v. Bo Hamburger. CAS 2001/A/343 UCI v/Hamburger, Lausanne, Switzerland. Court of Arbitration for Sport. (Accessed 28 January 2002)Google Scholar
  30. 30.
    Kraft confesses http://sports. espn. go.com/oly/news/story?id=1920706. 2004. (Accessed 16 June 2008)Google Scholar
  31. 31.
    Gledhill N. Blood doping and related issues: a brief review. Med Sci Sport Exercise 1982; 14:183–189.Google Scholar
  32. 32.
    Buick FJ, Gledhill N, Froese AB et al. Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol 1980;48: 636–642.PubMedGoogle Scholar
  33. 33.
    Spriet LL, Gledhill N, Froese AB et al. Effect of graded erythrocythemia on cardiovascular and metabolic responses to exercise. J. Appl Physiol, 1986;61:1942–1948.PubMedGoogle Scholar
  34. 34.
    Hill AV, Long CNH, Lupton H. Muscular exercise, lactic acid and the supply and utilization of oxygen. Parts VII-VIII. Proc Royal Soc Lond 1924;97:155–176.CrossRefGoogle Scholar
  35. 35.
    Kjellberg SR, Ruhde, U Sjostrand T. The amount of hemoglobin (blood volume) in relation to the pulse rate and heart volume during work. Acta Physiol Scand 1950;19:152–169.CrossRefGoogle Scholar
  36. 36.
    Castle WB, Jandl JH Blood viscosity and blood volume: opposing influences upon oxygen transport in polycythemia. Semin Hematol 1966;3:193–198.Google Scholar
  37. 37.
    Neumayr G, Pfister R, Mitterbauer G et al. Short-term effects of prolonged strenuous endurance exercise on the level of haematocrit in amateur cyclists. Int J Sport Med 2002;23:158–161.CrossRefGoogle Scholar
  38. 38.
    Brun JF, Bouchahda C, Chaze D et al. The paradox of hematocrit in exercise physiology: which is the “normal” range from an hemorheologist’s view point? Clin Hemorheol Microcirc 2000;22:287–303.PubMedGoogle Scholar
  39. 39.
    Ernst E. Changes in blood rheology produced by exercise. JAMA 1985;253:2962–2963.PubMedCrossRefGoogle Scholar
  40. 40.
    Ernst E, Matrai A. Hematocrit and plasma volume in runners Ann Intern Med. 1984;101:571.PubMedGoogle Scholar
  41. 41.
    Clement DB, Asmundson RC, Medhurst CW. Hemoglobin values: comparative survey of the 1976 Canadian Olympic team Can Med Assn J 1977;117:614–616.Google Scholar
  42. 42.
    Adamson JW, Vapnek D. Recombinant erythropoietin to improve athletic performance. N Engl J Med 1991;324:698–699.PubMedCrossRefGoogle Scholar
  43. 43.
    Gledhill N. The influence of altered blood volume and oxygen transport capacity on aerobic performance. Exerc Sport Sci Rev 1985;13:75–93PubMedCrossRefGoogle Scholar
  44. 44.
    Williams MH, Wesseldine S, Somma T et al. The effect of induced erythrocythemia upon 5-mile treadmill run time. Med Sci Sport Exercise 1981;13:169–175.Google Scholar
  45. 45.
    Sawka MN, Young AJ, Muza SR et al. Erythrocyte reinfusion and maximal aerobic power. An examination of modifying factors. JAMA 1987;257:1496–1499.PubMedCrossRefGoogle Scholar
  46. 46.
    Brien AJ, Simon TL. The effects of red blood cell infusion on 10-km race time. JAMA 257:2761–2765.Google Scholar
  47. 47.
    Canadian Erythropoietin Study Group. Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. BMJ 1990;300:573–578.CrossRefGoogle Scholar
  48. 48.
    Parisotto R, Gore CJ, Emslie KR et al. A novel method utilising markers of altered erythropoiesis for the detection of recombinant human erythropoietin abuse in athletes. Haematologica 2000;85:564–572.PubMedGoogle Scholar
  49. 49.
    Russell G, Gore CJ, Ashenden MJ et al. Effects of prolonged low doses of recombinant human erythropoietin during submaximal and maximal exercise Eur J Appl Physiol 2002;86:442–449.PubMedCrossRefGoogle Scholar
  50. 50.
    Birkeland KI, Stray-Gundersen J, Hemmersbach P et al. Effect of rhEPO administration on serum levels of sTfR and cycling performance. Med Sci Sport Exercise 2000;32:1238–1243.CrossRefGoogle Scholar
  51. 51.
    Berglund B, Ekblom B. Effect of recombinant human, erythropoietin treatment on blood pressure and some haematological parameters in healthy men. J Intern Med 1991;229:125–130.PubMedCrossRefGoogle Scholar
  52. 52.
    Lage JM, Panizo C, Masdeu J et al. Cyclist’s doping associated with cerebral sinus thrombosis. Neurology 2002;58:665.PubMedGoogle Scholar
  53. 53.
    Comitato Olimpico Nazionale Italiano. Commissione Scientifica Antidoping del CONI. “Progetto Io non rischil la salute!”. 2000. Rome, Italy.Google Scholar
  54. 54.
    Cazzola M. A global strategy for prevention and detection of blood doping with erythropoietin and related drugs. Haematologica 2000;85:561–563.PubMedGoogle Scholar
  55. 55.
    Shermer M. The doping dilemma. Sci Amer 2008;298:82–89.PubMedCrossRefGoogle Scholar
  56. 56.
    Aguilera R, Chapman TE, Catlin DH. Performance characteristics of a carbon isotope ratio method for detecting doping with testosterone based on urine diols: controls and at hletes with elevated testosterone/epitestosterone ratios. Clin Chem 2001;47:292–300.PubMedGoogle Scholar
  57. 57.
    Wallace JD, Cuneo RC, Baxter R et al. Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: a potential test for GH abuse in sport. J Clin Endocrinol Metab 1999;84:3591–3601.PubMedCrossRefGoogle Scholar
  58. 58.
    Union Cycliste Internationale, U.C.I. Lettre aux groupes sportifs. Lettre a tous les coureurs. 7–2-1997.Google Scholar
  59. 59.
    Vergouwen PC, Collee T, Marx JJ. Haematocrit in elite athletes. Int J Sport Med 1999: 20:538–541.CrossRefGoogle Scholar
  60. 60.
    Lynn Zinser and John Eligon. Athletes Are Facing Increased Vigilance. http://www.nytimes.com/ 2006/02/12/sports/olympics/12drugs.html?_r=1&scp=3&sq=2006+olympics+health+test&st=nyt &oref=slogin.2008. (Accessed 12 February 2006)Google Scholar
  61. 61.
    Marx JJ, Vergouwen PC. Packed-cell volume in elite athletes. Lancet 1998;352:451.PubMedCrossRefGoogle Scholar
  62. 62.
    Schumacher YO, Schmid A, Lenz T et al. Blood testing in sports: hematological, profile of a convicted athlete. Clin J Sport Med 2001;11:115–117.PubMedCrossRefGoogle Scholar
  63. 63.
    Saris WH, Senden JM, Brouns F. What is a normal red-blood cell mass for professional cyclists? Lancet 1998;352:1758.PubMedCrossRefGoogle Scholar
  64. 64.
    Neumayr G, Pfister R, Mitterbauer G et al. Short-term effects of prolonged strenuous endurance exercise on the level of haematocrit in amateur cyclists. Int Sport Med 2002;23:158–161.CrossRefGoogle Scholar
  65. 65.
    Videman T, Lereim I, Hemmingsson P et al. Changes in hemoglobin values in elite cross-country skiers from 1987–1999. Scand J Med Sc Sports 2000;10:98–102.CrossRefGoogle Scholar
  66. 66.
    Casoni I, Ricci G, Ballarin E et al. Hematological indices of erythropoietin administration in athletes. Int J Sport Med 1993;14:307–311.CrossRefGoogle Scholar
  67. 67.
    Gareau R, Audran M, Baynes RD et al. Erythropoietin abuse in athletes. Nature 1996 380:113.PubMedCrossRefGoogle Scholar
  68. 68.
    Audran M, Gareau R, Matecki S et al. Effects of erythropoietin administration in training athletes and possible in direct detection in doping control. Effects of erythropoietin administration in training athletes and possible indirect detection in doping control. Med Sci Sport Exercise 1999;31:639–645.CrossRefGoogle Scholar
  69. 69.
    Parisotto R, Wu M, Ashenden MJ et al. Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis. Haematologica 2001;86:128–137.PubMedGoogle Scholar
  70. 70.
    International Olympic Committee. http://www.olympic.org/uk/news/publications/ press_uk.asp?release=56. (Accessed 20 October 2002)Google Scholar
  71. 71.
    Kazlauskas R, Howe, C, Trout G. Strategies for rhEPO detection in sport. Clin J Sport Med 2002;12:229–235.PubMedCrossRefGoogle Scholar
  72. 72.
    Souillard A, Audran M, Bressolle F et al. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in athletes. Blood sampling and doping control. Br J Clin Pharmacol 1996;42:355–364.PubMedCrossRefGoogle Scholar
  73. 73.
    Flaharty KK, Caro J, Erslev A et al. Pharmacokinetics and erythropoietic response to human recombinant erythropoietin in healthy men. Clin Pharmacol Ther 1990;47:557–564.PubMedGoogle Scholar
  74. 74.
    Remacha AF, Ordonez J, Barcelo MJ et al. Evaluation of erythropoietin in endurance runners. Haematologica 1994;79:350–352.PubMedGoogle Scholar
  75. 75.
    Emslie KR, Howe C, Trout G. Measurement of urinary erythropoietin levels in athletes. Recent advances in doping analysis. 1999;7:291.Google Scholar
  76. 76.
    World Anti-Doping Agency. WADA Athlete’s Passport Q & A. http://www.wada-ama.org/ en/dynamic.ch2?pageCategory.id=754.2008 (Accessed 16 June 2008)Google Scholar
  77. 77.
    USADA. USADA News Release http://www.usantidoping.org/files/active/resources/ press_releases/Enhanced%20Initiatives%20-%20Bejing.pdf.2008. (Accessed 17 June 2008)Google Scholar
  78. 78.
    Morkeberg J, Saltin B, Belhage B et al. Blood profiles in elite cross-country skiers: a 6-year follow-up Scand J Med Sci Sports 2008; Epub ahead of printGoogle Scholar
  79. 79.
    Wide L, Bengtsson C, Berglund B et al. Detection in blood and urine of recombinant erythropoietin administered to healthy men. ExercMed Sci Sport Exercise 1995;27:1569–1576.Google Scholar
  80. 80.
    Skibeli V, Nissen-Lie G, Torjesen P. Sugar profiling proves that human serum erythropoietin differs from recombinant human erythropoietin. Blood 2001;98:3626–3634.PubMedCrossRefGoogle Scholar
  81. 81.
    Lasne F de Ceaurriz J. Recombinant erythropoietin in urine. Nature 2000;405:635.PubMedCrossRefGoogle Scholar
  82. 82.
    Lasne F. Double-blotting: a solution to the problem of non-specific binding of secondary antibodies in immunoblotting procedures. J Immunol Method 2001;253:125–131.CrossRefGoogle Scholar
  83. 83.
    WADA EPO committee. WADA Technical Document TD2004EPO. http://www.wada-ama.org/rtecontent/document/ td2004epo_en.pdf 2004. (Accessed 4 June 2008)Google Scholar
  84. 84.
    WADA EPO committee. WADA Technical Document TD2007EPO. http://www.wada-ama.org/rtecontent/document/td2007epo_en.pdf. 2007. (Accessed 4 June 2008)Google Scholar
  85. 85.
    Lasne F, Thioulouse J, Martin L et al. Detection of recombinant human erythropoietin in urine for doping analysis: interpretation of isoelectric profiles by discriminant analysis. Electrophoresis 2007;28:1875–1881.PubMedCrossRefGoogle Scholar
  86. 86.
    Egrie J, Browne J. Darbepoetin alfa is more potent in vivo and can be administered less frequently than rHuEPO. Br. J Cancer 2002;87:476–477.CrossRefGoogle Scholar
  87. 87.
    IOC Medical Commission. Post Games Report—Salt Lake City 2002, Phase 4 www.cafdis-antidoping. net. (Accessed 1 June 2002)Google Scholar
  88. 88.
    Macdougall IC. Optimizing the use of erythropoietic agents—pharmacokinetic and pharmacodynamic considerations. Nephrel Dial Transplant 2002:17 Suppl 5:66–70.CrossRefGoogle Scholar
  89. 89.
    Ashenden MJ, Varlet-Marie E, Lasne F et al. The effect of microdose recombinant human erythropoietin regimens in athletes. Haematologica 2006;91:1143–1148.PubMedGoogle Scholar
  90. 90.
    Lamon S, Robinson N, Mangin P et al. Detection window of Darbepoetin-alfa following one single subcutaneous injection. Clin Chim Acta 2007;379:145–149.PubMedCrossRefGoogle Scholar
  91. 91.
    Parisotto R, Gore CJ, Hahn AG et al. Reficulocyte parameters as potential discriminators of recombinant human erythropoietin abuse in elite athletes. Int J Sport Med 2000;21:471–479.CrossRefGoogle Scholar
  92. 92.
    Lundby C, Achman-Anderson NJ, Thomsen JJ et al. Testing for recombinant human erythropoietin in urine: problems associated with current anti doping testing. J Appl Physiol 6/28/2008 (on line).Google Scholar
  93. 93.
    Schellekens H. Follow-on biologics: challenges of the “next generation”. Nephrol Dial Transplant 2005;20 Suppl 4:iv31–iv36.PubMedCrossRefGoogle Scholar
  94. 94.
    Bren A, Kandus A, Varl J et al. A comparison between epoetin omega and epoetin alfa in the correction of anemia in hemodialysis patients: a prospective, controlled crossover study. Artif Organs 2002;26:91–97.PubMedCrossRefGoogle Scholar
  95. 95.
    Sikole A, Spasovski G, Zafirov D et al. Epoetin omega for treatment of anemia in maintenance hemodialysis patients. Clin Nephrol 2002;57:237–245.PubMedGoogle Scholar
  96. 96.
    Belalcazar V, Ventura R, Segura J et al. Clarification on the detection of epoetin delta and epoetin omega using isoelectric focusing. Am J Hematol 2008;83:754PubMedCrossRefGoogle Scholar
  97. 97.
    Macdougall IC. Novel erythropoiesis-stimulating agents: a new era in anemia management. Clin J Am Soc Nephrol 2008;3:200–207.PubMedCrossRefGoogle Scholar
  98. 98.
    McGahan L. Continuous erythropoietin receptor activator (Mircera) for renal anemia. Issues Emerg Health Technol 2008; vol: 1–6.Google Scholar
  99. 99.
    Connolly PJ, Wetter SK, Murray WV et al. Synthesis and erythropoietin receptor binding affinities of N,N-disubstituted amino acids. Bioorg Med Chem Lett 2000;10:1995–1999.PubMedCrossRefGoogle Scholar
  100. 100.
    Fan Q, Leuther KK, Holmes CP et al. Preclinical evaluation of Hematide, a novel erythropoiesis stimulating agent, for the treatment of anemia. Exp Hematol 2006;34:1303–1311.PubMedCrossRefGoogle Scholar
  101. 101.
    DelVecchio L, Locatelli F. New erythropoiesis-stimulating agents: how innovative are they? Contrib Nephrol 2008;161:255–260.CrossRefGoogle Scholar
  102. 102.
    Kohler M, Ayotte C, Desharnais P et al. Discrimination of recombinant and endogenous urinary erythropoietin by calculating relative mobility values from SDS gels. Int J Sport Med 2008;29:1–6.CrossRefGoogle Scholar
  103. 103.
    Stubiger G, Marchetti M, Nagano M et al. Characterisation of intact recombinant human erythropoietins applied in doping by means of planar gel electrophoretic techniques and matrixassisted laser desorption/ionisation linear time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2005;19:728–742.PubMedCrossRefGoogle Scholar
  104. 104.
    Associated Press Horse Racing News Wire. Police arrest four on suspicion of drug possession, race fixing. http://sports.espn.go.com/espn/wire?section=horse&id=2395684.2008. (Accessed 18 June 2008)Google Scholar
  105. 105.
    Standarbred Canada Insider News. ORC Raids Drug Supplier. www.standardbredcanada.ca/ news/iss0406/0420.html. (Accessed 18 June 2008)Google Scholar
  106. 106.
    Bartlett C, Clancy GJ, Cowan DA et al. Detection of the administration of human erythropoietin (HuEPO) to canines. J Anal Toxicol 2006;30:663–669.PubMedGoogle Scholar
  107. 107.
    Guan F, Uboh CE, Soma LR et al. Differentiation and identification of recombinant human erythropoietin and darbepoetin Alfa in equine plasma by LC-MS/MS for doping control. Anal Chem 2008;80:3811–3817.PubMedCrossRefGoogle Scholar
  108. 108.
    Guan F, Uboh CE, Soma LR et al. LC-MS/MS method for confirmation of recombinant human erythropoietin and darbepoetin alpha in equine plasma. Anal Chem 2007;79:4627–4635.PubMedCrossRefGoogle Scholar
  109. 109.
    Bulman E. IOC Prepares for possible future genetic cheating. Nando Media. (Accessed 2 June 2001)Google Scholar
  110. 110.
    Lasne F, Martin L, Larcher T et al. “Genetic Doping” with erythropoietin cDNA in primate muscle is detectable. Mol. Ther 2004;10:409–410.PubMedCrossRefGoogle Scholar
  111. 111.
    Nelson M, Popp H, Sharpe K et al. Proof of homologous blood transfusion through quantification of blood group antigens. Haematologica 2003;88:1284–1295.PubMedGoogle Scholar
  112. 112.
    Voss SC, Thevis M, Schinkothe T et al. Detection of homologous blood transfusion. Int J Sport Med 2007;28:633–637.CrossRefGoogle Scholar
  113. 113.
    Arndt PA, Kumpel BM. Blood doping in athletes-Detection of allogeneic blood transfusions by flow cytofluorometry. Am J Hematol 2008;83:657–667PubMedCrossRefGoogle Scholar
  114. 114.
    CAS. CAS 2005/A/884 Tyler Hamilton V/USADA & UCI. Http://www.usantidoping.org/ files/active/arbitration_rulings/CAS%20Decision-Tyler%20Hamilton_Feb2006.pdf. 2005. (Accessed 23 May 2008)Google Scholar
  115. 115.
    USADA. USADA press release on Hamilton decision http://www.usantidoping.org/files/ active/resources/press_releases/usada%20press%20release-hamilton_february%202006.pdf. 2008. (Accessed 23 may 2008)Google Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Don H. Catlin
    • 1
  • Caroline K. Hatton
    • 1
  1. 1.Anti-Doping Research. Inc.Los AngelesUSA

Personalised recommendations