Mechanism of erythropoietin receptor activation

  • Stefan N. Constantinescu
Part of the Milestones in Drug Therapy book series (MDT)


Erythropoietin receptor (EPOR) is a founding member of the cytokine receptor superfamily [1]. A type I transmembrane protein that binds the ligand erythropoietin (EPO) with high affinity (kDa approximately 400 pM) on the surface of erythroid progenitors, EPOR is devoid of catalytic activity. Given that the extracellular domain of EPOR only contains two cytokine receptor homology modules (D1 and D2), EPOR is considered a simple (or short) receptor, unlike other superfamily members, like the receptors for interleukin (IL)-6 type cytokines or for granulocyte colony-stimulating factor (G-CSF), which possess other extracellular sequences, such as immunoglobulin-like domains [2].


Transmembrane Domain Fluorescence Resonance Energy Transfer Cytokine Receptor Polycythemia Vera Growth Hormone Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D’Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. Cell 1989;57:277–285.PubMedCrossRefGoogle Scholar
  2. 2.
    Heinrich PC, Behrmann I, Haan S et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003;374:1–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Wu H, Liu X, Jaenisch R et al. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 1995;83:59–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Witthuhn BA, Quelle FW, Silvennoinen O et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 1993;74:227–236.PubMedCrossRefGoogle Scholar
  5. 5.
    Neubauer H, Cumano A, Muller M et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998;93:397–409.PubMedCrossRefGoogle Scholar
  6. 6.
    Parganas E, Wang D, Stravopodis D et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998;93:385–395.PubMedCrossRefGoogle Scholar
  7. 7.
    Syed RS, Reid SW, Li C et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 1998;395:511–516.PubMedCrossRefGoogle Scholar
  8. 8.
    de Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 1992;255:306–312.PubMedCrossRefGoogle Scholar
  9. 9.
    Philo JS, Aoki KH, Arakawa T et al. Dimerization of the extracellular domain of the erythropoietin (EPO) receptor by EPO: one high-affinity and one low-affinity interaction. Biochemistry 1996; 35:1681–1691.PubMedCrossRefGoogle Scholar
  10. 10.
    Broudy VC, Lin N, Brice M et al. Erythropoietin receptor characteristics on primary human erythroid cells. Blood 1991;77:2583–2590.PubMedGoogle Scholar
  11. 11.
    Zhang J, Socolovsky M, Gross AW et al. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 2003;102:3938–3946.PubMedCrossRefGoogle Scholar
  12. 12.
    Hilton DJ, Watowich SS, Murray PJ et al. Increased cell surface expression and enhanced folding in the endoplasmic reticulum of a mutant erythropoietin receptor. Proc Natl Acad Sci USA 1995; 92:190–194.PubMedCrossRefGoogle Scholar
  13. 13.
    Hilton DJ, Watowich SS, Katz L et al. Saturation mutagenesis of the WSXWS motif of the erythropoietin receptor. J Biol Chem 1996;271:4699–4708.PubMedCrossRefGoogle Scholar
  14. 14.
    Livnah O, Stura EA, Johnson DL et al. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 A. Science 1996;273:464–471.PubMedCrossRefGoogle Scholar
  15. 15.
    Livnah O, Stura EA, Middleton SA et al. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 1999;283:987–990.PubMedCrossRefGoogle Scholar
  16. 16.
    Livnah O, Johnson DL, Stura EA et al. An antagonist peptide-EPO receptor complex suggests that receptor dimerization is not sufficient for activation. Nature Struct Biol 1998;5:993–1004.PubMedCrossRefGoogle Scholar
  17. 17.
    Ballinger MD, Wells JA. Will any dimer do? Nature Struct Biol 1998;5:938–940.PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshimura A, Longmore G, Lodish HF. Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 1990; 348:647–649.PubMedCrossRefGoogle Scholar
  19. 19.
    Watowich SS, Yoshimura A, Longmore GD et al. Homodimerization and constitutive activation of the erythropoietin receptor. Proc Natl Acad Sci USA 1992;89:2140–2144.PubMedCrossRefGoogle Scholar
  20. 20.
    Kubatzky KF, Liu W, Goldgraben K et al. Structural requirements of the extracellular to transmembrane domain junction for erythropoietin receptor function. J Biol Chem 2005;280:14844–14854.PubMedCrossRefGoogle Scholar
  21. 21.
    Lu X, Gross AW, Lodish HF. Active conformation of the erythropoietin receptor: random and cysteine-scanning mutagenesis of the extracellular juxtamembrane and transmembrane domains. J Biol Chem 2006;281:7002–7011.PubMedCrossRefGoogle Scholar
  22. 22.
    Matthews DJ, Topping RS, Cass RT et al. A sequential dimerization mechanism for erythropoietin receptor activation. Proc Natl Acad Sci USA 1996;93:9471–9476.PubMedCrossRefGoogle Scholar
  23. 23.
    Qureshi SA, Kim RM, Konteatis Z et al. Mimicry of erythropoietin by a nonpeptide molecule. Proc Natl Acad Sci USA 1999;96:12156–12161.PubMedCrossRefGoogle Scholar
  24. 24.
    Huang LJ, Constantinescu SN, Lodish HF. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cells 2001;8:1327–1338.CrossRefGoogle Scholar
  25. 25.
    Radtke S, Hermanns HM, Haan C et al. Novel role for Janus kinase 1 in the regulation of oncostatin M receptor surface expression. J Biol Chem 2002;10:10.Google Scholar
  26. 26.
    Ragimbeau J, Dondi E, Alcover A et al. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J 2003;22:537–547.PubMedCrossRefGoogle Scholar
  27. 27.
    Royer Y, Staerk J, Costuleanu M et al. Janus kinases affect thrombopoietin receptor cell surface localization and stability. J Biol Chem 2005;280:27251–27261.PubMedCrossRefGoogle Scholar
  28. 28.
    Behrmann I, Smyczek T, Heinrich PC et al. Janus kinase (Jak) subcellular localization revisited: the exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jak. receptor complex to be equivalent to a receptor tyrosine kinase. J Biol Chem 2004;279:35486–35493.PubMedCrossRefGoogle Scholar
  29. 29.
    O’Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002;109:S121–131.CrossRefGoogle Scholar
  30. 30.
    Krolewski JJ, Lee R, Eddy R et al. Identification and chromosomal mapping of new human tyrosine kinase genes. Oncogene 1990;5:277–282.PubMedGoogle Scholar
  31. 31.
    Wilks AF, Harpur AG, Kurban RR et al. Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol 1991; 11:2057–2065.PubMedGoogle Scholar
  32. 32.
    Harpur AG, Andres AC, Ziemiecki A et al. JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 1992;7:1347–1353.PubMedGoogle Scholar
  33. 33.
    Velazquez L, Fellous M, Stark GR et al. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 1992;70:313–322.PubMedCrossRefGoogle Scholar
  34. 34.
    Ziemiecki A, Harpur AG, Wilks AF. JAK protein tyrosine kinases: their role in cytokine signalling. Trends Cell Biol 1994;4:207–212.PubMedCrossRefGoogle Scholar
  35. 35.
    Miura O, Cleveland JL, Ihle JN. Inactivation of erythropoietin receptor function by point mutations in a region having homology with other cytokine receptors. Mol Cell Biol 1993; 13:1788–1795.PubMedGoogle Scholar
  36. 36.
    Constantinescu SN, Huang LJ, Nam H et al. The erythropoietin receptor cytosolic juxtamembrane domain contains an essential, precisely oriented, hydrophobic motif. Mol Cells 2001;7:377–385.CrossRefGoogle Scholar
  37. 37.
    Constantinescu SN, Keren T, Socolovsky M et al. Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain. Proc Natl Acad Sci USA 2001;98:4379–4384.PubMedCrossRefGoogle Scholar
  38. 38.
    Henis YI, Moustakas A, Lin HY et al. The types II and III transforming growth factor-beta receptors form homo-oligomers. J Cell Biol 1994;126:139–154.PubMedCrossRefGoogle Scholar
  39. 39.
    Brown RJ, Adams JJ, Pelekanos RA et al. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat Struct Mol Biol 2005;12:814–821.PubMedCrossRefGoogle Scholar
  40. 40.
    Gurezka R, Laage R, Brosig B et al. A heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J Biol Chem 1999; 274:9265–9270.PubMedCrossRefGoogle Scholar
  41. 41.
    Kubatzky KF, Ruan W, Gurezka R et al. Self assembly of the transmembrane domain promotes signal transduction through the erythropoietin receptor. Curr Biol 2001;11:110–115.PubMedCrossRefGoogle Scholar
  42. 42.
    Li JP, D’Andrea AD, Lodish HF et al. Activation of cell growth by binding of Friend spleen focusforming virus gp55 glycoprotein to the erythropoietin receptor. Nature 1990;343:762–764.PubMedCrossRefGoogle Scholar
  43. 43.
    Chung SW, Wolff L, Ruscetti SK. Transmembrane domain of the envelope gene of a polycythemia-inducing retrovirus determines erythropoietin-independent growth. Proc Natl Acad Sci USA 1989;86:7957–7960.PubMedCrossRefGoogle Scholar
  44. 44.
    Constantinescu SN, Liu X, Beyer W et al. Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO J 1999;18:3334–3347.PubMedCrossRefGoogle Scholar
  45. 45.
    Constantinescu SN, Keren T, Russ WP et al. The erythropoietin receptor transmembrane domain mediates complex formation with viral anemic and polycythemic gp55 proteins. J Biol Chem 2003; 278:43755–43763.PubMedCrossRefGoogle Scholar
  46. 46.
    Remy I, Wilson IA, Michnick SW. Erythropoietin receptor activation by a ligand-induced conformation change. Science 1999;283:990–993.PubMedCrossRefGoogle Scholar
  47. 47.
    Watowich SS, Hilton DJ, Lodish HF. Activation and inhibition of erythropoietin receptor function: role of receptor dimerization. Mol Cell Biol 1994;14:3535–3549.PubMedGoogle Scholar
  48. 48.
    Greiser JS, Stross C, Heinrich PC et al. Orientational constraints of the gp130 intracellular juxtamembrane domain for signaling. J Biol Chem 2002;277:26959–26965.PubMedCrossRefGoogle Scholar
  49. 49.
    Seubert N, Royer Y, Staerk J et al. Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. Mol Cells 2003;12:1239–1250.CrossRefGoogle Scholar
  50. 50.
    Wrighton NC, Farrell FX, Chang R et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996;273:458–464.PubMedCrossRefGoogle Scholar
  51. 51.
    Elliott S, Lorenzini T, Yanagihara D et al. Activation of the erythropoietin (EPO) receptor by bivalent anti-EPO receptor antibodies. J Biol Chem 1996;271:24691–24697.PubMedCrossRefGoogle Scholar
  52. 52.
    Feng J, Witthuhn BA, Matsuda T et al. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 1997;17:2497–2501.PubMedGoogle Scholar
  53. 53.
    Lucet IS, Fantino E, Styles M et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 2006;107:176–183.PubMedCrossRefGoogle Scholar
  54. 54.
    Boggon TJ, Li Y, Manley PW et al. Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. Blood 2005;106:996–1002.PubMedCrossRefGoogle Scholar
  55. 55.
    Constantinescu SN, Ghaffari S, Lodish HF. The erythropoietin receptor: structure, activation and intracellular signal transduction. TEM 1999;10:18–23.PubMedGoogle Scholar
  56. 56.
    Matsuda T, Feng J, Witthuhn BA et al. Determination of the transphosphorylation sites of Jak2 kinase. Biochem Biophys Res Commun 2004;325:586–594.PubMedCrossRefGoogle Scholar
  57. 57.
    Funakoshi-Tago M, Pelletier S, Matsuda T et al. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO J 2006;25:4763–4772.PubMedCrossRefGoogle Scholar
  58. 58.
    Spivak JL. Polycythemia vera: myths, mechanisms, and management. Blood 2002; 100:4272–4290.PubMedCrossRefGoogle Scholar
  59. 59.
    Prchal JF, Axelrad AA. Bone-marrow responses in polycythemia vera. N Engl J Med 1974; 290:1382.PubMedGoogle Scholar
  60. 60.
    James C, Ugo V, Le Couedic JP et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434:1144–1148.PubMedCrossRefGoogle Scholar
  61. 61.
    Levine RL, Wadleigh M, Cools J et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7:387–397.PubMedCrossRefGoogle Scholar
  62. 62.
    Kralovics R, Passamonti F, Buser AS et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352:1779–1790.PubMedCrossRefGoogle Scholar
  63. 63.
    Baxter EJ, Scott LM, Campbell PJ et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:1054–1061.PubMedGoogle Scholar
  64. 64.
    Vainchenker W, Constantinescu SN. A unique activating mutation in JAK2 is at the origin of polycythemia vera and allows a new classification of myeloproliferative disease. Hematology 2005;195–200.Google Scholar
  65. 65.
    Zhao R, Xing S, Li Z et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280:22788–22792.PubMedCrossRefGoogle Scholar
  66. 66.
    Staerk J, Kallin A, Demoulin JB et al. JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation: cross-talk with IGF1 receptor. J Biol Chem 2005;280:41893–41899.PubMedCrossRefGoogle Scholar
  67. 67.
    Lindauer K, Loerting T, Liedl KR et al. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng 2001;14:27–37.PubMedCrossRefGoogle Scholar
  68. 68.
    Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 2002;277:47954–47963.PubMedCrossRefGoogle Scholar
  69. 69.
    Lacout C, Pisani DF, Tulliez M et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006;108:1652–1660.PubMedCrossRefGoogle Scholar
  70. 70.
    Wernig G, Mercher T, Okabe R et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006;107:4274–4281.PubMedCrossRefGoogle Scholar
  71. 71.
    Tiedt R, Schomber T, Hao-Shen H et al. Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood 2007;109:1503–1506.PubMedCrossRefGoogle Scholar
  72. 72.
    Dusa A, Staerk J, Elliott J et al. Substitution of pseudokinase domain residue V617 by large nonpolar amino acids causes activation of JAK2. J Biol Chem 2008Google Scholar
  73. 73.
    Hookham MB, Elliott J, Suessmuth Y et al. The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood 2007;109:4924–4929.PubMedCrossRefGoogle Scholar
  74. 74.
    Wernig G, Gonneville JR, Crowley BJ et al. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood 2008;111:3751–3759.PubMedCrossRefGoogle Scholar
  75. 75.
    Lu X, Huang LJ, Lodish HF. Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F. J Biol Chem 2008;283:5258–5266.PubMedCrossRefGoogle Scholar
  76. 76.
    Lu X, Levine R, Tong W et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 2005;102:18962–18967.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Stefan N. Constantinescu
    • 1
  1. 1.Ludwig Institute for Cancer Research and de Duve InstituteUniversité catholique de LouvainBrusselsBelgium

Personalised recommendations