Intracellular signaling by the erythropoietin receptor

  • Harvey F. Lodish
  • Saghi Ghaffari
  • Merav Socolovsky
  • Wei Tong
  • Jing Zhang
Part of the Milestones in Drug Therapy book series (MDT)


The erythropoietin receptor (EPOR) is crucial for promoting the survival, proliferation, and differentiation of mammalian erythroid progenitors [1]. Differentiation from colony-forming units-erythroid (CFU-E) to late basophilic erythroblasts is highly EPO dependent, whereas differentiation beyond this stage is no longer dependent on EPO, but requires adhesion of the cells to a fibronectin matrix, through α4β1 integrin [2].


Ataxia Telangiectasia Mutant Erythroid Cell Erythroid Progenitor Erythroid Differentiation FoxO Transcription Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 1995;83:59–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Eshghi S, Vogelezang M, Hynes R et al. a4β1 integrin and erythropoietin mediate temporally distinct steps in terminal erythroid differentiation and proliferation. J Cell Biol 2007;177:871–880.PubMedCrossRefGoogle Scholar
  3. 3.
    Socolovsky M, Constantinescu SN, Bergelson S et al. Cytokines in hematopoiesis: specificity and redundancy in receptor function. Adv Protein Chem 1998;52:141–198.PubMedCrossRefGoogle Scholar
  4. 4.
    Brisken C, Socolovsky M, Lodish HF et al. The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium. Proc. Natl Acad Sci USA 2002;99:14241–14245.PubMedCrossRefGoogle Scholar
  5. 5.
    Socolovsky M, Fallon AEJ, Lodish HF. The prolactin receptor rescues EpoR-/-erythroid progenitors and replaces EpoR in a synergistic interaction with c-kit. Blood 1998;92:1491–1496.PubMedGoogle Scholar
  6. 6.
    Socolovsky M, Dusanter-Fourt I, Lodish HF. The prolactin receptor, as well as severely truncated erythropoietin receptors support differentiation of erythroid progenitors. J Biol Chem 1997;272:14009–14013.PubMedCrossRefGoogle Scholar
  7. 7.
    Brivanlou AH, Darnell JE Jr, Signal transduction and the control of gene expression. Science 2002;295:813–818.PubMedCrossRefGoogle Scholar
  8. 8.
    Levy DE, Darnell JE Jr, Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002;3:651–662.PubMedCrossRefGoogle Scholar
  9. 9.
    Kirito K, Nakajima K, Watanabe T et al. Identification of the human erythropoietin receptor region required for Stat 1 and Stat 3 activation. Blood 2002;99:102–110.PubMedCrossRefGoogle Scholar
  10. 10.
    Klingmuller U, Bergelson S, Hsiao JG et al. Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5. Proc Natl Acad Sci USA 1996;93:8324–8328.PubMedCrossRefGoogle Scholar
  11. 11.
    Paffett-Lugassy N, Hsia N, Fraenkel PG et al. Functional conservation of erythropoietin signaling in zebrafish. Blood 2007;110:2718–2726.PubMedCrossRefGoogle Scholar
  12. 12.
    Yoon D, Watowich SS. Hematopoietic cell survival signals are elicited through non-tyrosine-containing sequences in the membrane-proximal region of the erythropoietin receptor (EPOR) by a Stat5-dependent pathway. Exp Hematol 2003;31:1310–1316.PubMedCrossRefGoogle Scholar
  13. 13.
    John S, Vinkemeier U, Soldaini E et al. The significance of tetramerization in promoter recmitment by Stat5. Mol Cell Biol 1999;19:1910–1918.PubMedGoogle Scholar
  14. 14.
    Fujitani Y, Hibi M, Fukada T et al. An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT. Oncogene 1997;14:751–761.PubMedCrossRefGoogle Scholar
  15. 15.
    Barahmand-Pour F, Meinke A, Groner B et al. Jak2-Stat5 interactions analyzed in yeast. J Biol Chem 1998;273:12567–12575.PubMedCrossRefGoogle Scholar
  16. 16.
    Soldaini E, John S, Moro S et al. DNA binding site selection of dimeric and tetrameric Star5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. Mol Cell Biol 2000;20:389–401.PubMedCrossRefGoogle Scholar
  17. 17.
    Neculai D, Neculai AM, Verrier S et al. Structure of the unphosphorylated STAT5a dimer. J Biol Chem 2005;280:40782–40787.PubMedCrossRefGoogle Scholar
  18. 18.
    Mao X, Ren Z, Parker GN et al. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cells 2005;17:761–771.CrossRefGoogle Scholar
  19. 19.
    Mertens C, Zhong M, Krishnaraj R et al. Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev 2006;20:3372–3381.PubMedCrossRefGoogle Scholar
  20. 20.
    Azam M, Lee C, Strenhlow I et al. Functionally distinct isoforms of STAT5 are generated by protein processing. Immunity 1997;6:691–701.PubMedCrossRefGoogle Scholar
  21. 21.
    Decker T, Kovarik P. Serine phosphorylation of STATs. Oncogene 2000;19:2628–2637.PubMedCrossRefGoogle Scholar
  22. 22.
    Paulson M, Pisharody S, Pan L et al. Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem 1999;274:25343–25349.PubMedCrossRefGoogle Scholar
  23. 23.
    Vinkemeier U. Getting the message across. STAT! Design principles of a molecular signaling circuit. J Cell Biol 2004; 167: 197–201.PubMedCrossRefGoogle Scholar
  24. 24.
    Reich NC, Liu L. Tracking STAT nuclear traffic. Nat Rev Immunol 2006;6:602–612.PubMedCrossRefGoogle Scholar
  25. 25.
    Socolovsky M, Fallon AEJ, Wang S et al. Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in bcl-XL induction. Cell 1999;98:181–191.PubMedCrossRefGoogle Scholar
  26. 26.
    Motoyama N, Kimura T, Takahashi T et al. bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J Exp Med 1999;189:1691–1698.PubMedCrossRefGoogle Scholar
  27. 27.
    Moucadel V, Constantinescu SN. Differential STAT5 signaling by ligand-dependent and constitutively active cytokine receptors. J Biol Chem 2005;280:13364–13373.PubMedCrossRefGoogle Scholar
  28. 28.
    Teglund S, McKay C, Schuetz E et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 1998;93:841–850.PubMedCrossRefGoogle Scholar
  29. 29.
    Zang H, Sato K, Nakajima H et al. The distal region and receptor tyrosines of the Epo receptor are non-essential for in vivo erythropoiesis. EMBO J 2001;20:3156–3166.PubMedCrossRefGoogle Scholar
  30. 30.
    Snow JW, Abraham N, Ma MC et al. STAT5 promotes multilineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells. Blood 2002;99:95–101.PubMedCrossRefGoogle Scholar
  31. 31.
    Cui Y, Riedlinger G, Miyoshi K et al. Inactivation of Stat5 in mouse mammry epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 2004;24:8037–8047.PubMedCrossRefGoogle Scholar
  32. 32.
    Socolovsky M, Nam H, Fleming MD et al. Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 2001;98:3261–3273.PubMedCrossRefGoogle Scholar
  33. 33.
    Menon MP, Karur V, Bogacheva O et al. Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis. J Clin Invest 2006;116:683–694.PubMedCrossRefGoogle Scholar
  34. 34.
    Socolovsky M, Murrell M, Liu Y et al. Negative autoregulation by FAS mediates robust fetal erythropoiesis. PLoS Biol 2007;5:e252.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu Y, Pop R, Sadegh C et al. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood 2006;108:123–133.PubMedCrossRefGoogle Scholar
  36. 36.
    Klingmuller U, Wu H, Hsiao JG et al. Identification of a novel pathway important for proliferation and differentiation of primary erythroid progenitors. Proc Natl Acad Sci USA 1997;94:3016–3021.PubMedCrossRefGoogle Scholar
  37. 37.
    Damen JE, Mui AL, Puil L et al. Phosphatidylinositol 3-kinase associates, via its Src homology 2 domains, with the activated erythropoietin receptor. Blood 1993;81:3204–3210.PubMedGoogle Scholar
  38. 38.
    Damen JE, Cutler RL, Jiao H et al. Phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the P85 subunit of phosphatidylinositol (PI) 3-kinase and for EpR-associated PI 3-kinase activity. J Biol Chem 1995;270:23402–23408.PubMedCrossRefGoogle Scholar
  39. 39.
    Barnache S, Mayeux P, Payrastre B et al. Alterations of the phosphoinositide 3-kinase and mitogen-activated protein kinase signaling pathways in the erythropoietin-independent Spi-1/PU, 1 transgenic proerythroblasts. Blood 2001;98:2372–2381.PubMedCrossRefGoogle Scholar
  40. 40.
    von Lindern M, Amelsvoort MP, van Dijk T et al. Protein kinase C alpha controls erythropoietin receptor signaling. J Biol Chem 2000;275:34719–34727.CrossRefGoogle Scholar
  41. 41.
    Wu H, Klingmuller U, Acurio A et al. Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation. Proc Natl Acad Sci USA 1997;94:1806–1810.PubMedCrossRefGoogle Scholar
  42. 42.
    Bouscary D, Pene F, Claessens YE et al. Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood 2003;101:3436–3443.PubMedCrossRefGoogle Scholar
  43. 43.
    Verdier F, Chretien S, Billat C et al. Erythropoietin induces the tyrosine phosphorylation of insulin receptor substrate 2. An alternate pathway for erythropoietin-induced phosphatidylinositol 3-kinase activation. J Biol Chem 1997;272:26173–26178.PubMedCrossRefGoogle Scholar
  44. 44.
    Lecoq-Lafon C, Verdier F, Fichelson S et al. Erythropoietin induces the tyrosine phosphorylation of GAB1 and its association with SHC, SHP2, SHIP, and phosphatidylinositol 3-kinase. Blood 1999;93:2578–2585.PubMedGoogle Scholar
  45. 45.
    Kubota Y, Tanaka T, Kitanaka A et al. Src transduces erythropoietin-induced differentiation signals through phosphatidylinositol 3-kinase. EMBO J 2001;20:5666–5677.PubMedCrossRefGoogle Scholar
  46. 46.
    Huddleston H, Tan B, Yang FC et al. Functional p85alpha gene is required for normal murine fetal erythropoiesis. Blood 2003;102:142–145.PubMedCrossRefGoogle Scholar
  47. 47.
    Sarbassov DD, Guertin DA, Ali SM et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005;307:1098–1101.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim DH, Sarbassov DD, Ali SM et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002;110:163–175.PubMedCrossRefGoogle Scholar
  49. 49.
    Sarbassov DD, Ali SM, Kim DH et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004;14:1296–1302.PubMedCrossRefGoogle Scholar
  50. 50.
    Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005;24:7410–7425.PubMedCrossRefGoogle Scholar
  51. 51.
    Haseyama Y, Sawada K, Oda A et al. Phosphatidylinositol 3-kinase is involved in the protection of primary cultured human erythroid precursor cells from apoptosis. Blood 1999;94:1568–1577.PubMedGoogle Scholar
  52. 52.
    Kashii Y, Uchida M, Kirito K et al. A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 2000;96:941–949.PubMedGoogle Scholar
  53. 53.
    Bao H, Jacobs-Helber SM, Lawson AE et al. Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood 1999;93:3757–3773.PubMedGoogle Scholar
  54. 54.
    Zhao W, Kitidis C, Fleming MD et al. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 2006;107:907–915.PubMedCrossRefGoogle Scholar
  55. 55.
    Ghaffari S, Kitidis C, Zhao W et al. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation. Blood 2006;107:1888–1891.PubMedCrossRefGoogle Scholar
  56. 56.
    Kadri Z, Maouche-Chretien L, Rooke HM et al. Phosphatidylinositol 3-kinase/Akt induced by erythropoietin renders the erythroid differentiation factor GATA-1 competent for TIMP-1 gene transactivation. Mol Cell Biol 2005;25:7412–7422.PubMedCrossRefGoogle Scholar
  57. 57.
    Rooke HM, Orkin SH. Phosphorylation of GATA1 at serine residues 72, 142, and 310 is not essential for hematopoiesis in vivo. Blood 2006; 107:3527–3530.PubMedCrossRefGoogle Scholar
  58. 58.
    Chen WS, Xu PZ, Gottlob K et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 2001;15:2203–2208.PubMedCrossRefGoogle Scholar
  59. 59.
    Cho H, Thorvaldsen JL, Chu Q et al. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 2001;276:38349–38352.PubMedCrossRefGoogle Scholar
  60. 60.
    Cho H, Mu J, Kim JK et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001;292: 1728–1731.PubMedCrossRefGoogle Scholar
  61. 61.
    Hammerman PS, Fox CJ, Birnbaum MJ et al. Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 2005;105:4477–4483.PubMedCrossRefGoogle Scholar
  62. 62.
    Brunet A, Bonni A, Zigmond MJ et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–868.PubMedCrossRefGoogle Scholar
  63. 63.
    Mahmud DL, Deb DK, Platanias LC et al. Phosphorylation of forkhead transcription factors by erythropoietin and stem cell factor prevents acetylation and their interaction with coactivator p300 in erythroid progenitor cells. Oncogene 2002;21:1556–1562.PubMedCrossRefGoogle Scholar
  64. 64.
    Marinkovic D, Zhang X, Yalcin S et al. FoxO3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest 2007;117:2133–2144.PubMedCrossRefGoogle Scholar
  65. 65.
    Ghaffari S, Jagani Z, Kitidis C et al. Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proc Natl Acad Sci USA 2003;100:6523–6528.PubMedCrossRefGoogle Scholar
  66. 66.
    Bakker WJ, Blazquez-Domingo M, Kolbus A et al. FoxO3 regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol 2004;164:175–184.PubMedCrossRefGoogle Scholar
  67. 67.
    Sivertsen EA, Hystad ME, Gutzkow KB et al. PI3K/Akt-dependent Epo-induced signalling and target genes in human early erythroid progenitor cells. Br J Haematol 2006;135:117–128.PubMedCrossRefGoogle Scholar
  68. 68.
    Fang J, Menon M, Kapelle W et al. EPO modulation of cell-cycle regulatory genes, and cell division, in primary bone marrow erythroblasts. Blood 2007;110:2361–2370.PubMedCrossRefGoogle Scholar
  69. 69.
    Menon MP, Fang J, Wojchowski DM. Core erythropoietin receptor signals for late erythroblasts development. Blood 2006;107:2662–2672.PubMedCrossRefGoogle Scholar
  70. 70.
    Henry M, Lynch J, Eapen A et al. DNA damage-induced cell-cycle arrest of hematopoietic cells is overridden. Blood 2001;98:834–841.PubMedCrossRefGoogle Scholar
  71. 71.
    Marshall CJ. Opportunities for pharmacological intervention in the ras pathway. Ann Oncol 1995;6:63–67.PubMedGoogle Scholar
  72. 72.
    Nagata Y, Nishida E, Todokoro K. Activation of JNK signaling pathway by erythropoietin, thrombopoietin, and interleukin-3. Blood 1997;89:2664–2669.PubMedGoogle Scholar
  73. 73.
    Nagata Y, Moriguchi T, Nishida E et al. Activation of p38 MAP kinase pathway by erythropoietin and interleukin-3. Blood 1997;90:929–934.PubMedGoogle Scholar
  74. 74.
    Gobert S, Duprez V, Lacombe C et al. The signal transduction pathway of erythropoietin involves three forms of mitogen-activated protein (MAP) kinase in UT7 erythroleukemia cells. Eur J Biochem 1995;234:75–83.PubMedCrossRefGoogle Scholar
  75. 75.
    Nagata Y, Takahashi N, Davis RJ et al. Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood 1998;92:1859–1869.PubMedGoogle Scholar
  76. 76.
    Nagata Y, Kiefer F, Watanabe T et al. Activation of hematopoietic pogenitor kinase-1 by erythropoietin. Blood 1999; 93:3347–3354.PubMedGoogle Scholar
  77. 77.
    Miura Y, Miura O, Ihle JN et al. Activation of the mitogen-activated kinase pathway by the erythropoietin receptor. J Biol Chem 1994;269:29962–29969.PubMedGoogle Scholar
  78. 78.
    Sakamoto H, Kitamura T, Yoshimura A. Mitogen-activated protein kinase plays an essential role in the erythropoietin-dependent proliferation of CTLL-2 cells. J Biol Chem 2000;275:35857–35862.PubMedCrossRefGoogle Scholar
  79. 79.
    Sui X, Krantz SB, You M et al. Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis. Blood 1998;92:1142–1149.PubMedGoogle Scholar
  80. 80.
    Jacobs-Helber SM, Ryan JJ, Sawyer ST. JNK and p38 are activated by erythropoietin (EPO) but are not induced in apoptosis following EPO withdrawal in EPO-dependent HCD57 cells. Blood 2000;96:933–940.PubMedGoogle Scholar
  81. 81.
    Shan R, Price JO, Gaarde WA et al. Distinct roles of JNKs/p38 MAP kinase and ERKs in apoptosis and survival of HCD-57 cells induced by withdrawal or addition of erythropoietin. Blood 1999;94:4067–4076.PubMedGoogle Scholar
  82. 82.
    Johnson L, Greenbaum D, Cichowski K et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 1997;11:2468–2481.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang J, Socolovsky M, Gross AW et al. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 2003;102:3938–3946.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang J, Lodish HF. Constitutive activation of the MEK/ERK pathway mediates and effects of oncogenic H-ras expression in primary erythroid progenitors. Blood 2004;104:1679–1687.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang J, Liu Y, Beard C et al. Expression of oncogenic K-ras from its endogenous promoter leads to a partial block of erythroid differentiation and hyperactivation of cytokine-dependent signaling pathways. Blood 2007;109:5238–5241.PubMedCrossRefGoogle Scholar
  86. 86.
    Chan IT, Kutok JL, Williams IR et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004;113:528–538.PubMedGoogle Scholar
  87. 87.
    Braun BS, Tuveson DA, Kong N et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc. Natl. Acad Sci USA 2004;101:597–602.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang J, Lodish HF. Identification of K-ras as the major regulator for cytokine-dependent Akt activation in erythroid progenitors in vivo. Proc Natl Acad Sci USA 2005;102:14605–14610.PubMedCrossRefGoogle Scholar
  89. 89.
    Jaumot M, Yan J, Clyde-Smith J et al. The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors. Raf-1 and phosphoinositide 3-kinase. J Biol Chem 2002;277:272–278.PubMedCrossRefGoogle Scholar
  90. 90.
    Booden MA, Sakaguchi DS, Buss JE. Mutation of Ha-Ras C terminus changes effector pathway utilization. J Biol Chem 2000;275:23559–23568.PubMedCrossRefGoogle Scholar
  91. 91.
    Suzuki N, Ohneda O, Takahashi S et al. Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood 2002;100:2279–2288.PubMedCrossRefGoogle Scholar
  92. 92.
    Neel BG, Gu H, Pao L. The Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003;28:284–293.PubMedCrossRefGoogle Scholar
  93. 93.
    Klingmuller U, Lorenz U, Cantley LC et al. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 1995;80:729–738.PubMedCrossRefGoogle Scholar
  94. 94.
    Yi T, Zhang J, Miura O et al. Hematopoietic cell phosphatase associates with erythropoietin (Epo) receptor after Epo-induced receptor tyrosine phosphorylation: identification of potential binding sites. Blood 1995;85:87–95.PubMedGoogle Scholar
  95. 95.
    Ram PA, Waxman DJ. Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J Biol Chem 1997;272:17694–17702.PubMedCrossRefGoogle Scholar
  96. 96.
    Aoki N, Matsuda T. A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. J Biol Chem 2000;275:39718–39726.PubMedCrossRefGoogle Scholar
  97. 97.
    Aoki N, Matsuda T. A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol Endocrinol 2002;16:58–69.PubMedCrossRefGoogle Scholar
  98. 98.
    Inagaki-Ohara K, Hanada T, Yoshimura A. Negative regulation of cytokine signaling and inflammatory diseases. Curr Opin Pharmacol 2003;3:435–442.PubMedCrossRefGoogle Scholar
  99. 99.
    Krebs DL, Hilton DJ. SOCS: physiological suppressors of cytokine signaling. J Cell Sci 2000;113:2813–2819.PubMedGoogle Scholar
  100. 100.
    Frantsve J, Schwaller J, Sternberg DW et al. SOCS-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol 2001;21:3547–3557.PubMedCrossRefGoogle Scholar
  101. 101.
    Ungureanu D, Saharinen P, Juntila I et al. Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 2002;22:3316–3326.PubMedCrossRefGoogle Scholar
  102. 102.
    Hortner M, Nielsch U, Mayr LM et al. A new high affinity binding site for suppressor of cytokine signaling-3 on the erythropoietin receptor. Eur J Biochem 2002;269:2516–2526.PubMedCrossRefGoogle Scholar
  103. 103.
    Sasaki A, Yasukawa H, Shouda T et al. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 2000;275:29338–29347.PubMedCrossRefGoogle Scholar
  104. 104.
    Sarna MK, Ingley E, Busfield SJ et al. Differential regulation of SOCS genes in normal and transformed erythroid cells. Oncogene 2003;22:3221–3230.PubMedCrossRefGoogle Scholar
  105. 105.
    Tong W, Lodish HF. Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med 2004;200:569–580.PubMedCrossRefGoogle Scholar
  106. 106.
    Tong W, Zhang J, Lodish HF. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 2005;105:4606–4612.CrossRefGoogle Scholar
  107. 107.
    Rudd CE. Lnk adaptor: novel negative regulator of B cell lymphopoiesis. Sci STKE. 2001;2001:PE1PubMedCrossRefGoogle Scholar
  108. 108.
    Shuai K. Regulation of cytokine signaling pathways by PIAS proteins. Cell Res 2006;16:196–202.PubMedCrossRefGoogle Scholar
  109. 109.
    Watowich SS, Wu H, Socolovsky M et al. Cytokine receptor signal transduction and the control of hematopoietic cell developments. Annu Rev Cell Dev Biol 1996; 12:91–128.PubMedCrossRefGoogle Scholar
  110. 110.
    Zhang J, Lodish H. Endogenous K-ras signaling in erythroid differentiation. Cell Cycle, 2007;6:1970–1973.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Harvey F. Lodish
    • 1
    • 2
  • Saghi Ghaffari
    • 3
  • Merav Socolovsky
    • 4
  • Wei Tong
    • 5
  • Jing Zhang
    • 6
  1. 1.Whitehead Institute for Biomedical ResearchCambridge
  2. 2.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Gene and Cell MedicineMount Sinal School of MedicineNew-YorkUSA
  4. 4.Department of Pediatrics and Department of Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  5. 5.Department of Pediatrics, University of Pennsylvania School of Medicine and Division of HematologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  6. 6.McArdle Laboratory for Cancer ResearchUniversity of WisconsinMadisonUSA

Personalised recommendations