Erythropoiesis: an overview

  • Bruce E. Torbett
  • Jeffrey S. Friedman
Part of the Milestones in Drug Therapy book series (MDT)


Red blood cell production in vertebrates is dynamic and tightly regulated with losses due to senescence or bleeding in normal individuals being balanced by generation of new red cells. The main function of the red cells is to transport oxygen from the lungs to tissues in all parts of the body and to transport carbon dioxide back for exchange. Healthy adult humans maintain a total of 2–3×1013 erythrocytes at any given time, with men having 5–6 million and woman having 4–5 million erythrocytes/microliter blood [1]. The normal life span of an erythrocyte is approximately 120 days in the blood requiring a daily replacement of about 1% of the circulating erythrocytes [1]. To put the numbers of red cells needed daily into perspective, in an adult human maintenance of steady-state red cell numbers requires the generation of 2×106 erythrocytes every second. Moreover, basal oxygen consumption is 4 mL/kg/min and body stores are approximately five times greater, emphasizing the need to maintain a stable red cell mass while having the capacity to increase red cells during times of tissue hypoxia [1,2]. Changes in the production of erythrocytes from a steady-level will occur in response to blood loss, increased oxygen demand, altered erythrocyte lifespan, or diseases.


Hematopoietic Stem Cell Fetal Liver Erythroid Cell Erythroid Progenitor Erythropoietin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lichtman M, Beutler E, Kipps T et al. Williams hematology: 2007; McGraw-Hill.Google Scholar
  2. 2.
    Spivak JL. The anaemia of cancer: death by a thousand cuts. Nat Rev Cancer 2005;5:543–555.PubMedCrossRefGoogle Scholar
  3. 3.
    Baron MH, Fraser ST. The specification of early hematopoiesis in the mammal. Curr Opin Hematol 2005;12:217–221.PubMedCrossRefGoogle Scholar
  4. 4.
    McGrath K, Palis J. Ontogeny of erythropoiesis in the mammalian embryo. Curr Top Dev Biol 2008;82:1–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 2008;9:129–136.PubMedCrossRefGoogle Scholar
  6. 6.
    Koury MJ, Bondurant MC. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 1990;248:378–381.PubMedCrossRefGoogle Scholar
  7. 7.
    Migliaccio AR, Migliaccio G. Human embryonic hemopoiesis: control mechanisms underlying progenitor differentiation in vitro Dev Biol 1988;125:127–134.PubMedCrossRefGoogle Scholar
  8. 8.
    Akashi K, Traver D, Miyamoto T et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000;404:193–197.PubMedCrossRefGoogle Scholar
  9. 9.
    Debili N, Coulombel L, Croisille L et al. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood 1996;88:1284–1296.PubMedGoogle Scholar
  10. 10.
    McLeod DL, Shreve MM, Axelrad AA. Induction of megakaryocyte colonies with platelet formation in vitro. Nature 1996;88:492–494.Google Scholar
  11. 11.
    Suda T, Suda J, Ogawa M. Single-cell origin of mouse hemopoietic colonies expressing multiple lineages in variable combinations. Proc. Natl. Acad Sci USA 1983;80:6689–6693.PubMedCrossRefGoogle Scholar
  12. 12.
    Heath DS, Axelrad AA, McLeod DL et al. Separation of the erythropoietin-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood 1976;47:777–792.PubMedGoogle Scholar
  13. 13.
    Stephenson JR, Axelrad AA, McLeod DL et al. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA 1971;68:1542–1546.PubMedCrossRefGoogle Scholar
  14. 14.
    Granick S, Levere RD. Heme synthesis in erythroid cells. Prog Hematol 1994;27:1–47.Google Scholar
  15. 15.
    Bessis M, Mize C, Prenant M. Erythropoiesis: comparison of in vivo and in vitro amplification. Blood Cells 1978;4:155–174.PubMedGoogle Scholar
  16. 16.
    Manwani D, Bieker JJ. The erythroblastic island. Curr Top. Dev Biol 2008;82:23–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Rhodes MM, Kopsombut P, Bondurant MC et al. Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood 2008;111:1700–1708.PubMedCrossRefGoogle Scholar
  18. 18.
    Gifford SC, Derganc J, Shevkoplyas SS et al. A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence. Br J Haematol 2006;135:395–404.PubMedCrossRefGoogle Scholar
  19. 19.
    McGrath KE, Palis J. Hematopoiesis in the yolk sac: more than meets the eye. Exp Hematol 2005;33:1021–1028.PubMedCrossRefGoogle Scholar
  20. 20.
    Migliaccio G, Migliaccio AR, Petti S et al. Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac—liver transition. J Clin Invest 1986;78:51–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Mikkola HK, Gekas C, Orkin SH et al. Placenta as a site for hematopoietic stem cell development. Exp Hematol 2005;33:1048–1054.PubMedCrossRefGoogle Scholar
  22. 22.
    Palis J, Yoder MC. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 2001;29:927–936.PubMedCrossRefGoogle Scholar
  23. 23.
    Haar JL, Ackerman GA. A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat Rec 1971;170:199–223.PubMedCrossRefGoogle Scholar
  24. 24.
    Silver L, Palis J. Initiation of murine embryonic erythropoiesis: a spatial, analysis. Blood 1997;89:1154–1164.PubMedGoogle Scholar
  25. 25.
    Palis J, Robertson S, Kennedy M et al. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 1999;126:5073–5084.PubMedGoogle Scholar
  26. 26.
    Wong PM, Chung SW, Chui DH et al. Properties of the earliest clonogenic hemopoietic precursors to appear in the developing murine yolk sac. Proc. Natl Acad Sci USA 1986;83:3851–3854.PubMedCrossRefGoogle Scholar
  27. 27.
    Brotherton TW, Chui DH, Gauldie J et al. Hemoglobin ontogeny during normal mouse fetal development. Proc Natl Acad Sci USA 1979;76:2853–2857.PubMedCrossRefGoogle Scholar
  28. 28.
    Kingsley PD, Malik J, Fantauzzo KA et al. Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood 2004;104:19–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Steiner R, Vogel H. On the kinetics of erythroid cell differentiation in fetal mice. I. Microspectrophotometric determination of the hemoglobin content in erythroid cells during gestation. J Cell Physiol 1973;81:323–328.PubMedCrossRefGoogle Scholar
  30. 30.
    Huber TL, Kouskoff V, Fehling HJ et al. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 2004;432:625–630.PubMedCrossRefGoogle Scholar
  31. 31.
    de Bruijn MF, Speck NA, Peeters MC et al. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 2000;19:2465–2474.PubMedCrossRefGoogle Scholar
  32. 32.
    Muller AM, Medvinsky A, Strouboulis J et al. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1994;1:291–301.PubMedCrossRefGoogle Scholar
  33. 33.
    Zeigler BM, Sugiyama D, Chen M et al. The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development 2006;133:4183–4192.PubMedCrossRefGoogle Scholar
  34. 34.
    Ema H, Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 2000;95:2284–2288.PubMedGoogle Scholar
  35. 35.
    Kumaravelu P, Hook L, Morrison AM et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 2002;129:4891–4899.PubMedGoogle Scholar
  36. 36.
    Ghiaur G, Ferkowicz MJ, Milsom MD et al. Rac 1 is essential for intraembryonic hematopoiesis and for the initial seeding of fetal liver with definitive hematopoietic progenitor cells. Blood 2008;111:3313–3321.PubMedCrossRefGoogle Scholar
  37. 37.
    Lux CT, Yoshimoto M, McGrath K et al. All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood 2008;111:3435–3438.PubMedCrossRefGoogle Scholar
  38. 38.
    Palis J. Developmental biology: no red cell is an island. Nature 2004;432:964–965.PubMedCrossRefGoogle Scholar
  39. 39.
    Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev 1992;72:449–489.PubMedGoogle Scholar
  40. 40.
    Adamson JW. The erythropoietin-hematocrit relationship in normal and polycythemic man: implications of marrow regulation. Blood 1968;32:597–609.PubMedGoogle Scholar
  41. 41.
    Hillman RS, Henderson PA. Control of marrow production by the level of iron supply. J Clin Invest 1969;48:454–460.PubMedCrossRefGoogle Scholar
  42. 42.
    Crosby WH, Akeroyd JH. The limit of hemoglobin synthesis in hereditary hemolytic anemia; its relation to the excretion of bile pigment. Am J Med 1952;13:273–283.PubMedCrossRefGoogle Scholar
  43. 43.
    Lin CS, Lim SK, D’Agati V et al. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev 1996;10:154–164.PubMedCrossRefGoogle Scholar
  44. 44.
    Spivak JL, Pham T, Isaacs M et al. Erythropoietin is both a mitogen and a survival factor. Blood 1991;77:1228–1233.PubMedGoogle Scholar
  45. 45.
    Sawyer ST, Penta K. Erythropoietin cell biology. Hematol Oncol Clin North Am 1994;8:895–911.PubMedGoogle Scholar
  46. 46.
    Koury ST, Bondurant MC, Koury MJ et al. Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 1991;77:2497–2503.PubMedGoogle Scholar
  47. 47.
    Lacombe C, DaSilva JL, Bruneval P et al. Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J Clin Invest 1998;81:620–623.CrossRefGoogle Scholar
  48. 48.
    Bachmann S, Le Hir M, Eckardt KU. Co-localization of erythropoietin mRNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 1993;41:335–341.PubMedGoogle Scholar
  49. 49.
    Epstein AC, Gleadle JM, McNeill LA et al. C elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001;107:43–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 2001;15:2675–2686.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 1993;82:3610–3615.PubMedGoogle Scholar
  52. 52.
    Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 1993;268:21513–21518.PubMedGoogle Scholar
  53. 53.
    Semenza GL. HIF-1, 0(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus Cell 2001;107:1–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Peet D, Linke S. Regulation of HIF: asparaginyl hydroxylation. Novartis Found Symp 2006;272:37–49; discussion 49–53, 131–140.PubMedCrossRefGoogle Scholar
  55. 55.
    Ang SO, Chen H, Gordeuk VR et al. Endemic polycythemia in Russia: mutation in the VHL gene. Blood Cells Mol Dis 2002;28:57–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Ang SO, Chen H, Hirota K et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet 2002;32:614–621.PubMedCrossRefGoogle Scholar
  57. 57.
    Bento MC, Chang KT, Guan Y et al. Congenital polycythemia with homozygous and heterozygous mutations of von Hippel-Lindau gene: five new Caucasian patients. Haematologica 2005;90:128–129.PubMedGoogle Scholar
  58. 58.
    Brunelle JK, Bell EL, Quesada NM et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 2005;1:409–414.PubMedCrossRefGoogle Scholar
  59. 59.
    Guzy RD, Hoyos B, Robin E et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 2005;1:401–408.PubMedCrossRefGoogle Scholar
  60. 60.
    Mausfield KD, Guzy RD, Pan Y et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 2005;1:393–399.CrossRefGoogle Scholar
  61. 61.
    Zhang H, Bosch-Marce M, Shimoda LA et al. Mitochondrial autophagy is a HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008;283:10892–10903.PubMedCrossRefGoogle Scholar
  62. 62.
    Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE, 2007: 2007:cm8.Google Scholar
  63. 63.
    Berra E, Bénizri E, Ginouves A et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF, 1alpha in normaoxia EMBO J 2003;22:4082–4090.PubMedCrossRefGoogle Scholar
  64. 64.
    Percy MJ, Zhao Q, Flores A et al. From the Cover: A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci USA 2006;103:654–659.PubMedCrossRefGoogle Scholar
  65. 65.
    Percy MJ, Furlow PW, Beer PA et al. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood 2007;110:2193–2196.PubMedCrossRefGoogle Scholar
  66. 66.
    Rankin EB, Biju MP, Liu Q et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythro-poietin in vitro. J Clin Invest 2007;117:1068–1077.PubMedCrossRefGoogle Scholar
  67. 67.
    Gruber M, Hu CJ, Johnson RS et al. Acute postnatal ablation of Hif-2 alpha results in anemia. Proc Natl Acad Sci USA 2007;104:2301–2306.PubMedCrossRefGoogle Scholar
  68. 68.
    Witthuhn BA, Quelle FW, Silvennoinen O et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 1993;74:227–236.PubMedCrossRefGoogle Scholar
  69. 69.
    Wilson IA, Jolliffe LK. The structure, organization, activation and plasticity of the erythropoietin receptor. Curr Opin Struct Biol 1999;9:696–704.PubMedCrossRefGoogle Scholar
  70. 70.
    Richmond TD, Chohan M, Barber DL. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol 2005;15:146–155.PubMedCrossRefGoogle Scholar
  71. 71.
    Wu H, Liu X, Jaenisch R et al. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 1995;83:59–67.PubMedCrossRefGoogle Scholar
  72. 72.
    Neubauer H, Cumano A, Muller M et al. Jak2 deficiency difines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998;93:397–409.PubMedCrossRefGoogle Scholar
  73. 73.
    Parganas E, Wang D, Stravopodis D et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998;93:385–395.PubMedCrossRefGoogle Scholar
  74. 74.
    Klingmuller U, Lorenz U, Cantley LC et al. Specific recruitement of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 1995;80:729–738.PubMedCrossRefGoogle Scholar
  75. 75.
    Kralovics R, Indrak K, Stopka T et al. Two new EPO receptor mutations: truncated EPO receptors are most frequently associated with primary familial and congenital polycythemias. Blood 1997;90:2057–2061.PubMedGoogle Scholar
  76. 76.
    Sokol L, Prehal JE, D’Andrea A et al. Mutation in the negative regulatory element of the erythropoietin receptor gene in a case of sporadic primary polycythemia. Exp Hematol 1994;22:447–453.PubMedGoogle Scholar
  77. 77.
    de la Chapelle A, Traskelin AL, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci USA 1993;90:4495–4499.PubMedCrossRefGoogle Scholar
  78. 78.
    Levine RL, Wadleigh M, Cools J et al. Activating mutation in the tyrosine kinase JAK2 in poly-cythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7:387–397.PubMedCrossRefGoogle Scholar
  79. 79.
    James C, Ugo V, LeCouedic JP et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434:1144–1148.PubMedCrossRefGoogle Scholar
  80. 80.
    Baxter EJ, Scott LM, Campbell PJ et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:1054–1061.PubMedGoogle Scholar
  81. 81.
    Kralovics R, Passamonti F, Buser AS et al. A gain-of-function mutation of JAK 2 in myeloproliferative disorders. N Engl J Med 2005;352:1779–1790.PubMedCrossRefGoogle Scholar
  82. 82.
    Lu X, Levine R, Tong W et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 2005;102:18962–18967.PubMedCrossRefGoogle Scholar
  83. 83.
    Sathyanarayana P, Dev A, Fang J et al. EPO receptor circuits for primary erythroblast survival. Blood 2008: blood-2007-2010-119743.Google Scholar
  84. 84.
    Spivak JL. The blood in systemic disorders. Lancet 2000;355:1707–1712.PubMedCrossRefGoogle Scholar
  85. 85.
    Nemeth E, Tuttle MS, Powelson J et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004;306:2090–2093.PubMedCrossRefGoogle Scholar
  86. 86.
    Ganz T. Molecular control of iron transport. J Am Soc Nephrol 2007;18:394–400.PubMedCrossRefGoogle Scholar
  87. 87.
    Nemeth E, Rivera S, Gabayan V et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepeidin. J Clin Invest 2004;113:1271–1276.PubMedGoogle Scholar
  88. 88.
    Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. JAMA 2005;293:90–95.PubMedCrossRefGoogle Scholar
  89. 89.
    Ghezzi P, Brines M. Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ 2004;11Suppl 1:S37–44.CrossRefGoogle Scholar
  90. 90.
    Gregory T, Yu C, Ma A et al. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bel-xL expression. Blood 1999;94:87–96.PubMedGoogle Scholar
  91. 91.
    Orkin SH, Weiss MJ. Apoptosis. Cutting red-cell production. Nature 1999;401:433, 435–436.Google Scholar
  92. 92.
    Brines M, Grasso G, Fiordaliso F et al. Erythropoietin mediatestissue protection through an erythropoientin and common beta-subunit heteroreceptor. Proc Natl Acad Sci USA 2004;101:14907–14912.PubMedCrossRefGoogle Scholar
  93. 93.
    Erbayraktar S, Grasso G, Sfacteria A et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vitro. Proc Natl Acad Sci USA 2003;100:6741–6746.PubMedCrossRefGoogle Scholar
  94. 94.
    Schmidt RE, Green KG, Feng D et al. Erythropoietin and its carbamylated derivative prevent the development of experimental diabetic autonomic neuropathy in STZ-induced diabetic NOD-SCID mice. Exp Neurol 2008;209:161–170.PubMedCrossRefGoogle Scholar
  95. 95.
    Fiordaliso F, Chimenti S, Staszewsky L et al. A nonerythropoietic, derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proc Natl Acad Sci USA 2005;102:2046–2051.PubMedCrossRefGoogle Scholar
  96. 96.
    Leist M, Ghezzi P, Grasso G et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 2004;305:239–242.PubMedCrossRefGoogle Scholar
  97. 97.
    Yu X, Shacka JJ, Eells JB et al. Erythropoietin receptor signalling is required for normal brain development. Development 2002;129:505–516.PubMedGoogle Scholar
  98. 98.
    Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML. Inactivation of erythropietin leads to defects in cardiac morphogenesis. Development 1999;126:3597–3605.PubMedGoogle Scholar
  99. 99.
    Arcasoy MO. The non-haematopoietic biological effects of erythropoietin. Br J Haematol 2008;141:14–31.PubMedCrossRefGoogle Scholar
  100. 100.
    Phrommintikul A, Haas SJ, Elsik M et al. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet 2007;369:381–388.PubMedCrossRefGoogle Scholar
  101. 101.
    Bohlius J, Wilson J, Seidenfeld J et al. Recombinant human erythropoietins and cancer patients: updated meta-analysis of 57 studies including 9353 patients. J Natl Cancer Inst 2006;98:708–714.PubMedCrossRefGoogle Scholar
  102. 102.
    Henke M, Laszig R, Rube C et al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind placebo-controlled trial. Lancet 2003;362:1255–1260.PubMedCrossRefGoogle Scholar
  103. 103.
    Leyland-Jones B, Semiglazov V, Pawlicki M et al. Maintaining normal hemoglobin levels with epoetin alfa in mainly nonanemic patients with metastatic breast cancer receiving first-line chemotherapy: a survival study. J Clin Oncol 2005;23:5960–5972.PubMedCrossRefGoogle Scholar
  104. 104.
    Wright JR, Ung YC, Julian JA et al. Randomized, double-blind, placebo-controlled trial of erythropoietin in non-small-cell lung cancer with disease-related anemia. J Clin Oncol 2007;25:1027–1032.PubMedCrossRefGoogle Scholar
  105. 105.
    Rizzo JD, Somerfield MR, Hagerty KL et al. Use of epoetin and darbepoetin in patients with Cancer 2007 American Society of Hematology/American Society of Clinical Oncology clinical practice guideline update. Blood 2008;111:25–41.PubMedCrossRefGoogle Scholar
  106. 106.
    Jelkmann W, Pagel H, Wolff M et al. Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys. Life Sci 1992;50:301–308.PubMedCrossRefGoogle Scholar
  107. 107.
    Bianchi L., Tacchini L, Cairo G. HIF-1-mediated activation of transferrin receptor gene transcription by iron chelation. Nucleic Acids Res 1999;27:4223–4227.PubMedCrossRefGoogle Scholar
  108. 108.
    Peyssonnaux C, Zinkernagel AS, Schuepbach RA et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 2007;117:1926–1932.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Bruce E. Torbett
    • 1
  • Jeffrey S. Friedman
    • 1
  1. 1.Department of Molecular and Experimental MedicineThe Scripps Research InstituteLa JollaUSA

Personalised recommendations