Advertisement

On a Radon Transform

  • Ekaterina Gots
  • Lev Lyakhov
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 181)

Abstract

In this article a special type of Radon transform (Kipriyanov-Radon transform K γ ) is considered and some properties of this transform are proved. The main results of this work are the inversion formulas of K γ , which were obtained with a help of general B-hypersingular integrals.

Keywords

Radon transform inversion formulas B-hypersingular integrals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kipriyanov I.A., Lyakhov L.N., On Fourier, Fourier-Bessel, and Radon transforms, Doklady Akademii Nauk, 360:2 (1998), 157–160 [Dokl. Math. 57, 361–364 (1998)].zbMATHMathSciNetGoogle Scholar
  2. [2]
    Kipriyanov I.A., Singular Elliptic Boundary Value Problems, Nauka, Moscow, 1996.Google Scholar
  3. [3]
    Lyakhov L.N., On the one class of hypersingular integrals, Russian Acad. Sci. Dokl. Math. 49(1), 83–87 (1994).MathSciNetGoogle Scholar
  4. [4]
    Aliev I.A., Rubin B., Wavelet-like trans-forms for admissible semi-groups; inversion formulas for potentials and Radon transforms, J. Fourier Anal. Appl. 11 (2005), no. 3, 333–352.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Rubin B., Reconstruction of functions from their integrals over κ-planes, Israel J. Math. 141 (2004), 93–117.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Rubin B., Inversion formulas for the spherical Radon transform and the generalized cosine transform, Adv. in Appl. Math. 29 (2002), no. 3, 471–497.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Rubin B., Helgason-Marchaud inversion formulas for Radon transforms, Proc. Amer. Math. Soc. 130 (2002), no. 10, 3017–3023.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Levitan B.M., Expansion by Bessel functions in the Fourier series and integrals, Usp. Mat. Nauk, 4:2 (1951), 102–143.MathSciNetGoogle Scholar
  9. [9]
    John F., Plane Waves and Spherical Means, Wiley (Interscience), New York, 1955.zbMATHGoogle Scholar
  10. [10]
    Lyakhov L.N., On the one class of hypersingular integrals, Dokl. Akad. Nauk SSSR 315(2), 291–296 (1990).Google Scholar
  11. [11]
    Samko S.G., On the Riesz-potential Spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 40(5), 1443–1472 (1976).MathSciNetGoogle Scholar
  12. [12]
    Samko S.G., Kilbas A.A., and Marichev O.I., Integrals and Derivatives of Fractional Orders and Some of Their Applications Nauka i Tekhnika, Minsk, 1987.Google Scholar
  13. [13]
    Lyakhov L.N., Kipriyanov-Radon Transform, Trudy Mat. Inst. Steklov, 248 (2005), 153–163.MathSciNetGoogle Scholar
  14. [14]
    Gelfand I.M., Graev M.I. and Vilenkin I.Ya., Integral Geometry and Representation Theory, GIFML, Moscow, 1962.Google Scholar
  15. [15]
    Edwards R.E., Functional Analysis. Theory and Application, Mir, Moscow, 1969.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Ekaterina Gots
    • 1
  • Lev Lyakhov
    • 2
  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland
  2. 2.Voronezh State Technological AcademyVoronezhRussia

Personalised recommendations