Advertisement

Rotation Algebras and Continued Fractions

  • Florin P. Boca
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 181)

Abstract

This paper discusses two problems related with the approximation of rotation algebras: (i) estimating the norm of almost Mathieu operators and (ii) studying a certain AF algebra associated with the continued fraction algorithm. The Effros-Shen AF algebras naturally arise as primitive quotients of this algebra.

Keywords

Rotation algebras almost Mathieu operators continued fractions AF algebras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Avila, S. Jitomirskaya, The ten martini problem, preprint math.DS/0503363, Ann. Math., to appear.Google Scholar
  2. [2]
    C. Béguin, A. Valette, A. Zuk, On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper’s equation, J. Geom. Phys. 21 (1997), 337–356.CrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    J. Bellissard, Lipshitz continuity of gap boundaries for Hofstadter-like spectra, Comm. Math. Phys. 160 (1994), 599–613.CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    F.P. Boca, On the spectrum of certain discrete Schrödinger operators with quasiperiodic potential, Duke Math. J. 101 (2000), 515–528.CrossRefMathSciNetzbMATHGoogle Scholar
  5. [5]
    F.P. Boca, Products of matrices \( \left[ {\begin{array}{*{20}c} 1 & 1 \\ 0 & 1 \\ \end{array} } \right] \) \( \left[ {\begin{array}{*{20}c} 1 & 0 \\ 1 & 1 \\ \end{array} } \right] \) and the distribution of reduced quadratic irrationals, J. Reine Angew. Mathematik 606 (2007), 149–165.MathSciNetzbMATHGoogle Scholar
  6. [6]
    F.P. Boca, An AF algebra associated with the Farey tessellation, Canad. J. Math., to appear.Google Scholar
  7. [7]
    F.P. Boca, A. Zaharescu, Norm estimates of almost Mathieu operators, J. Funct. Anal. 220 (2005), 76–96.CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    O. Bratteli, Inductive limits of finite-dimensional C*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–235.CrossRefMathSciNetzbMATHGoogle Scholar
  9. [9]
    O. Bratteli, The center of approximately finite-dimensional C*-algebras, J. Funct. Anal. 21 (1976), 195–202.CrossRefMathSciNetzbMATHGoogle Scholar
  10. [10]
    A. Brocot, Calcul des rouages par approximation, Revue Chronométrique 3 (1861), 186–194.Google Scholar
  11. [11]
    L. Carlitz, A problem in partitions related to Stirling numbers, Riv. Mat. Univ. Parma (2) 5 (1964), 61–75.MathSciNetzbMATHGoogle Scholar
  12. [12]
    M.D. Choi, G.A. Elliott, N. Yui, Gauss polynomials and the rotation algebra, Invent. Math. 99 (1990), 225–246.CrossRefMathSciNetzbMATHGoogle Scholar
  13. [13]
    A. Connes, Noncommutative Geometry, Academic Press, 1994.Google Scholar
  14. [14]
    K. Davidson, C*-Algebras by Example, Fields Institute Monographs Vol. 6, Amer. Math. Soc., Providence, RI, 1996.Google Scholar
  15. [15]
    E.G. Effros, C.-L. Shen, Approximately finite C*-algebras and continued fractions, Indiana Univ. Math. J. 29 (1980), 191–204.CrossRefMathSciNetzbMATHGoogle Scholar
  16. [16]
    G.A. Elliott, D.E. Evans, The structure of the irrational rotation C*-algebra, Ann. Math. 138 (1993), 477–501.CrossRefMathSciNetzbMATHGoogle Scholar
  17. [17]
    D.E. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras, Oxford University Press, 1998.Google Scholar
  18. [18]
    C. Faivre, Distribution of Lévy constants for quadratic numbers, Acta Arith. 61 (1992), 13–34.MathSciNetzbMATHGoogle Scholar
  19. [19]
    F. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter Graphs and Towers of Algebras, Springer-Verlag, 1989.Google Scholar
  20. [20]
    V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1–25.CrossRefMathSciNetzbMATHGoogle Scholar
  21. [21]
    J. Kallies, A. Özlük, M. Peter, C. Snyder, On asymptotic properties of a number theoretic function arising out of a spin chain model in statistical mechanics, Comm. Math. Phys. 222 (2001), 9–43.CrossRefMathSciNetzbMATHGoogle Scholar
  22. [22]
    H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336–354.CrossRefMathSciNetzbMATHGoogle Scholar
  23. [23]
    H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146–156.MathSciNetzbMATHGoogle Scholar
  24. [24]
    A. Knauf, Number theory, dynamical systems and statistical mechanics, Rev.Math. Phys. 11 (1999), 1027–1060.CrossRefMathSciNetzbMATHGoogle Scholar
  25. [25]
    I. Niven, H.S. Zuckerman, An Introduction to the Theory of Numbers, 2nd edition, John Wiley & Sons, Inc., 1966.Google Scholar
  26. [26]
    M. Pimsner, D. Voiculescu, Imbedding the irrational rotation C*-algebras into an AF algebra, J. Operator Theory 8 (1980), 201–210.MathSciNetGoogle Scholar
  27. [27]
    T. Prellberg, J. Fiala, P. Kleban, Cluster approximation for the Farey fraction spin chain, J. Statist. Phys. 123 (2006), 455–471.CrossRefMathSciNetzbMATHGoogle Scholar
  28. [28]
    J. Puig, Cantor spectrum for the almost Mathieu operator, Comm. Math. Phys. 244 (2004), 297–309.CrossRefMathSciNetzbMATHGoogle Scholar
  29. [29]
    M.A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415–429.MathSciNetzbMATHGoogle Scholar
  30. [30]
    P. Sarnak, Spectral behaviour of quasiperiodic potentials, Comm. Math. Phys. 84 (1982), 377–401.CrossRefMathSciNetzbMATHGoogle Scholar
  31. [31]
    M. Stern, Über eine zahlentheoretische Funktion, J. Reine Angew. Mathematik 55 (1858), 193–220.zbMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Florin P. Boca
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of Illinois Urbana-ChampaignUrbanaUSA
  2. 2.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations