Toeplitz Operator Algebras and Complex Analysis

  • Harald Upmeier
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 181)


The aim of this survey article is to present the recent work concerning Hilbert spaces of holomorphic functions on hermitian symmetric domains of arbitrary rank and dimension, in relation to operator theory (Toeplitz C*-algebras and their representations), harmonic analysis (discrete series of semi-simple Lie groups) and quantization (covariant functional calculi and Berezin transformation).


Toeplitz Operator Bergman Space Jordan Algebra Discrete Series Symmetric Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Contemp. Math. 185 (1995).Google Scholar
  2. [AU1]
    J. Arazy, H. Upmeier, Invariant inner products in spaces of holomorphic functions on bounded symmetric domains, Documenta Math. 2 (1997), 213–261.MathSciNetMATHGoogle Scholar
  3. [AU2]
    J. Arazy and H. Upmeier, Discrete series representations and integration over boundary orbits of symmetric domains, Contemp. Math. 214 (1998), 1–22MathSciNetGoogle Scholar
  4. [AU3]
    J. Arazy, H. Upmeier, Covariant symbolic calculi on real symmetric domains, in: Singular integral operators, factorization and applications, Proc. Faro 2000, Birkhäuser 2002.Google Scholar
  5. [AU4]
    H. Upmeier, Invariant symbolic calculi and eigenvalues of invariant operators on symmetric domains, in: Function spaces, interpolation theory and related topics, 151–212, Proc. Lund 2000, de Gruyter 2002.Google Scholar
  6. [AU5]
    J. Arazy, H. Upmeier, Boundary measures for symmetric domains and integral formulas for the discrete Wallach points, Int. Equ. Op. Th. 47 (2003), 375–434.CrossRefMathSciNetMATHGoogle Scholar
  7. [AU6]
    J. Arazy, H. Upmeier, Weyl calculus for complex and real symmetric domains, Rend. Mat. Acc. Lincei 9.13 (2001), 165–181.Google Scholar
  8. [AU7]
    J. Arazy, H. Upmeier, An interpolating calculus for symmetric domains, Math. Nachr. 280 (2007), 939–961.CrossRefMathSciNetMATHGoogle Scholar
  9. [AU8]
    J. Arazy, H. Upmeier, Jordan Grassmann manifolds and intertwining operators, in preparation.Google Scholar
  10. [AU9]
    J. Arazy, H. Upmeier, Recursion formulas for the geodesic calculi on symmetric domains of rank one, preprint.Google Scholar
  11. [B1]
    F. Berezin, Covariant and contravariant symbols of operators, Math. USSR-Izv. 6 (1972), 1117–1151.CrossRefGoogle Scholar
  12. [B2]
    F. Berezin, Quantization in complex bounded domains, Soviet Math. Dokl. 14 (1973), 1209–1213.MATHGoogle Scholar
  13. [B3]
    F. Berezin, General concept of quantization, Comm. Math. Phys. 40 (1975), 153–174.CrossRefMathSciNetGoogle Scholar
  14. [B4]
    F. Berezin, Quantization in complex symmetric domains, Math. USSR-Izv. 9 (1975), 341–379.CrossRefGoogle Scholar
  15. [B5]
    F. Berezin, On relation between covariant and contravariant symbols of operators for complex classical domains, Soviet Math. Dokl. 19 (1978), 786–789.MATHGoogle Scholar
  16. [BC]
    C. Berger, L. Coburn, Wiener-Hopf operators on U 2, Int. Equ. Op.Th. 2 (1979), 139–173.CrossRefMathSciNetMATHGoogle Scholar
  17. [BCK]
    C. Berger, L. Coburn, A. Korányi, Opérateur de Wiener-Hopf sur les sphères de Lie, C.R. Acad. Sci. Paris 290 (1980), 989–991.MATHGoogle Scholar
  18. [BKU]
    R. Braun, W. Kaup, H. Upmeier, A holomorphic characterization of Jordan C*-algebras, Math. Z. 161 (1978), 277–290.CrossRefMathSciNetMATHGoogle Scholar
  19. [BLU]
    D. Borthwick, A. Lesniewski, H. Upmeier, Non-perturbative deformation quantization of Cartan domains, J. Funct. Anal. 113 (1993), 153–176.CrossRefMathSciNetMATHGoogle Scholar
  20. [B]
    L. Boutet de Monvel, On the index of Toeplitz operators of several complex variables, Invent. Math. 50 (1979), 242–272.MathSciNetGoogle Scholar
  21. [C]
    L. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973), 433–439.CrossRefMathSciNetMATHGoogle Scholar
  22. [CO]
    A. Connes, A survey of foliations and operator algebras, Proc. Symp. Pure Math. 38 (1981), 521–628.MathSciNetGoogle Scholar
  23. [CM]
    R. Curto, P. Muhly, C*-algebras of multiplication operators on Bergman spaces. J. Funct. Anal. 64 (1985), 315–329.CrossRefMathSciNetMATHGoogle Scholar
  24. [D]
    J. Dixmier, C*-Algebras, Amsterdam: North-Holland 1977.MATHGoogle Scholar
  25. [DP]
    G. van Dijk, M. Pevzner, Berezin kernels and tube domains, F. Funct. Anal. (to appear).Google Scholar
  26. [E]
    M. Englis, Berezin-Toeplitz quantization on the Schwartz space of bounded symmetric domains, J. Lie Theory 15 (2005), 27–50.MathSciNetMATHGoogle Scholar
  27. [EY]
    P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236.MathSciNetMATHGoogle Scholar
  28. [EU]
    M. Englis, H. Upmeier, Moyal restriction for real covariant calculi, in preparation.Google Scholar
  29. [FK1]
    J. Faraut, A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 64–89.CrossRefMathSciNetMATHGoogle Scholar
  30. [FK2]
    J. Faraut, A. Korányi, Analysis on Symmetric Cones, Oxford Univ. Press 1994.Google Scholar
  31. [GI]
    S. Gindikin, Analysis on homogeneous domains, Russian Math. Surveys 19 (1964), 1–89.CrossRefMathSciNetGoogle Scholar
  32. [G]
    V. Guillemin, Toeplitz operators in n dimensions, Int. Equ. Op. Th. 7 (1984), 145–205.CrossRefMathSciNetMATHGoogle Scholar
  33. [HE]
    S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Amer. Math. Soc., Providence, RI 2001.MATHGoogle Scholar
  34. [HLW]
    I. Hirschman, D. Liang, E. Wilson, Szegő limit theorems for Toeplitz operators on compact spaces, Trans. Amer. Math. Soc. 270 (1982), 351–376.CrossRefMathSciNetMATHGoogle Scholar
  35. [H]
    L.-K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Amer. Math. Soc., 1963.Google Scholar
  36. [HLZ]
    S. Hwang, Y. Liu, G. Zhang, Hilbert spaces of tensor-valued holomorphic functions on the unit ball ofn, Pacific J. of Math. 214, No. 2, 2004.Google Scholar
  37. [J]
    K. Johnson, On a ring of invariant polynomials on a hermitian symmetric space, J. Alg. 67 (1980), 72–80.CrossRefMATHGoogle Scholar
  38. [JNW]
    P. Jordan, J. v. Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math. 36 (1934), 29–64.CrossRefGoogle Scholar
  39. [K1]
    W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228 (1977), 39–64.CrossRefMathSciNetMATHGoogle Scholar
  40. [K2]
    W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), 503–529.CrossRefMathSciNetMATHGoogle Scholar
  41. [KM]
    A. Korányi, G. Misra, New construction of some homogeneous operators, C. R. Acad. Sci. 342 (2006), 933–936.MATHGoogle Scholar
  42. [KU1]
    W. Kaup, H. Upmeier, Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129–133.CrossRefMathSciNetMATHGoogle Scholar
  43. [KU2]
    W. Kaup, H. Upmeier, An infinitesimal version of Cartan’s uniqueness theorem, Manuscripta math. 22 (1977), 381–401.CrossRefMathSciNetMATHGoogle Scholar
  44. [KU3]
    W. Kaup, H. Upmeier, Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z. 157 (1977), 179–200.CrossRefMathSciNetMATHGoogle Scholar
  45. [K]
    M. Koecher, An Elementary Approach to Bounded Symmetric Domains, Houston: Rice University 1969.MATHGoogle Scholar
  46. [LPRS]
    M. Landstad, J. Phillips, I. Raeburn, C. Sutherland, Representations of crossed products by coactions an principal bundles, Trans. Amer. Math. Soc. 299 (1987), 747–784.CrossRefMathSciNetMATHGoogle Scholar
  47. [L1]
    M. Lassalle, L’espace de Hardy d’un domaine de Reinhardt généralisé, J. Funct. Anal. 60 (1985), 309–340.CrossRefMathSciNetMATHGoogle Scholar
  48. [L2]
    M. Lassalle, Noyau de Szegő, K-types et algèbres de Jordan, C.R. Acad. Sci. Paris 303 (1986), 1–4.MathSciNetMATHGoogle Scholar
  49. [L3]
    M. Lassalle, Algèbres de Jordan et ensemble de Wallach, Invent. Math. 89 (1987), 375–393.CrossRefMathSciNetMATHGoogle Scholar
  50. [LO1]
    O. Loos, Jordan Pairs, Springer Lect. Notes Math. 460 (1975).Google Scholar
  51. [LO2]
    O. Loos, Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine 1977.Google Scholar
  52. [MR]
    P. Muhly, J. Renault, C*-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982), 1–44.CrossRefMathSciNetMATHGoogle Scholar
  53. [N]
    Yu. Neretin, Plancherel formula for Berezin deformation of L 2 on Riemannian symmetric space, J. Funct. Anal. 189 (2002), 336–408.CrossRefMathSciNetMATHGoogle Scholar
  54. [NT]
    Y. Nakagami, M. Takesaki, Duality for Crossed Products of von Neumann Algebras, Springer Lect. Notes Math. 731 (1979).Google Scholar
  55. [PZ]
    L. Peng, G. Zhang, Tensor products of holomorphic representations and bilinear differential operators, J. Funct. Anal. 210 (2004), 171–192.CrossRefMathSciNetMATHGoogle Scholar
  56. [S]
    W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969), 61–80.CrossRefMathSciNetMATHGoogle Scholar
  57. [SSU]
    N. Salinas, A. Sheu, A. Upmeier, Toeplitz operators on pseudoconvex domains and foliation algebras, Ann. Math. 130 (1989), 531–565.CrossRefMathSciNetGoogle Scholar
  58. [ST]
    R. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), 76–115.CrossRefMathSciNetMATHGoogle Scholar
  59. [UU1]
    A. Unterberger, J. Unterberger, La série discrète de SL(2,ℝ) et les opérateurs pseudo-différentiels sur une demi-droite, Ann. Sc. Éc. Norm. Sup. 17 (1984), 83–116.MathSciNetMATHGoogle Scholar
  60. [UU2]
    A. Unterberger, J. Unterberger, Quantification et analyse pseudo-différentielle, Ann. Sc. Éc. Norm. Sup. 21 (1988), 133–158.MathSciNetMATHGoogle Scholar
  61. [UU]
    A. Unterberger, H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), 563–597.CrossRefMathSciNetMATHGoogle Scholar
  62. [U1]
    H. Upmeier, Toeplitz operators on bounded symmetric domains, Trans. Amer. Math. Soc., 280 (1983), 221–237.CrossRefMathSciNetMATHGoogle Scholar
  63. [U2]
    H. Upmeier, Toeplitz C*-algebras on bounded symmetric domains, Ann. Math. 119(1984), 549–576.CrossRefMathSciNetGoogle Scholar
  64. [U3]
    H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math. 108 (1986), 1–25.CrossRefMathSciNetMATHGoogle Scholar
  65. U4] H. Upmeier, Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics, CBMS Ser. Math. 67, Amer. Math. Soc., Providence RI, 1987.Google Scholar
  66. [U5]
    H. Upmeier, Toeplitz C*-algebras and non-commutative duality, J. Oper. Th. 26 (1991), 407–432.MathSciNetMATHGoogle Scholar
  67. [U6]
    H. Upmeier, Symmetric Banach Manifolds and Jordan C*-Algebras, North-Holland 1985.Google Scholar
  68. [U7]
    H. Upmeier, Multivariable Toeplitz Operators and Index Theory, Birkhäuser 1996.Google Scholar
  69. [U8]
    H. Upmeier, Toeplitz operators and solvable C?-algebras on hermitian symmetric spaces, Bull. Amer. Math. Soc. 11 (1984), 329–332.CrossRefMathSciNetMATHGoogle Scholar
  70. [U9]
    H. Upmeier, Toeplitz operators on symmetric Siegel domains, Math. Ann. 271 (1985), 401–414.CrossRefMathSciNetMATHGoogle Scholar
  71. [U10]
    H. Upmeier, Index theory for Toeplitz operators on bounded symmetric domains, Bull. Amer. Math. Soc. 16 (1987), 109–112.CrossRefMathSciNetMATHGoogle Scholar
  72. [U11]
    H. Upmeier, Fredholm indices for Toeplitz operators on bounded symmetric domains, Amer. J. Math. 110 (1988), 811–832.CrossRefMathSciNetMATHGoogle Scholar
  73. [U12]
    H. Upmeier, Index theory for multivariable Wiener-Hopf operators, J. reine angew. Math. 384 (1988), 57–79.MathSciNetMATHGoogle Scholar
  74. [VR]
    M. Vergne, H. Rossi, Analytic continuation of holomorphic discrete series of a semi-simple Lie group, Acta Math. 136 (1975), 1–59.CrossRefMathSciNetGoogle Scholar
  75. [WA]
    N. Wallach, The analytic continuation of the discrete series I, II, Trans. Amer. Math. Soc. 251 (1979), 1–17, 19–37.CrossRefMathSciNetMATHGoogle Scholar
  76. [W]
    A. Wassermann, Algèbres d’opérateurs de Toeplitz sur les groupes unitaires, C.R. Acad. Sci. 299 (1984), 871–874.MathSciNetMATHGoogle Scholar
  77. [Z]
    G. Zhang, Berezin transform on real bounded symmetric domains, Trans. Amer. Math. Soc. 353 (2001), 3769–3787.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Harald Upmeier
    • 1
  1. 1.Fachbereich MathematikUniversity of MarburgMarburgGermany

Personalised recommendations