On Generalized Spherical Fractional Integration Operators in Weighted Generalized Hölder Spaces on the Unit Sphere

  • Natasha Samko
  • Boris Vakulov
Part of the Operator Theory: Advances and Applications book series (OT, volume 181)


For spherical convolution operators with a given power type asymptotic of their Fourier-Laplace multiplier we prove a statement on the boundedness within the framework of weighted generalized Hölder spaces on the unit sphere. The result obtained explicitly shows how spherical convolution operators under consideration improve the behavior of the continuity modulus of functions.


spherical convolution operators spherical potentials indices of almost monotonic functions Boyd-type indices continuity modulus generalized Hölder spaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.K. Karapetiants and N.G. Samko. Weighted theorems on fractional integrals in the generalized Hölder spaces H 0ω(ρ) via the indices m ω and M ω. Fract. Calc. Appl. Anal., 7(4): 437–458, 2004.MathSciNetGoogle Scholar
  2. [2]
    N.G. Samko. On boundedness of singular operator in weighted generalized Hölder spaces H 0ω (Г, ρ) in terms of upper and lower indices of these spaces (in Russian). Deponierted in VINITI, no. 349-B91, 28p., Moscow, 1991.Google Scholar
  3. [3]
    N.G. Samko. Singular integral operators in weighted spaces with generalized Hölder condition. Proc. A. Razmadze Math. Inst, 120: 107–134, 1999.zbMATHMathSciNetGoogle Scholar
  4. [4]
    S.G. Samko. Hypersingular Integrals and their Applications. London-New York: Taylor & Francis, Series “Analytical Methods and Special Functions”, vol. 5, 358 + xvii pages, 2002.zbMATHGoogle Scholar
  5. [5]
    S.G. Samko and B.G. Vakulov. On equivalent norms in fractional order function spaces of continuous functions on the unit sphere. Fract. Calc. Appl. Anal., 3(4): 401–433, 2000.zbMATHMathSciNetGoogle Scholar
  6. [6]
    B.G. Vakulov. Spherical convolution operators in the case of power decreasing of its multiplier (Russian). Deponierted in VINITI, no. 6545-83, Moscow, 1983.Google Scholar
  7. [7]
    B.G. Vakulov. Hardy-Littlewood-Sobolev theorems on potential type operators in L p(S n−1, ρ). Deponierted in VINITI, no. 5435-86, 41p., Moscow, 1986.Google Scholar
  8. [8]
    B.G. Vakulov. Potential type operator on a sphere in generalized Hölder classes. Izv. Vuzov. Matematika, (11): 66–69, 1986.MathSciNetGoogle Scholar
  9. [9]
    B.G. Vakulov. Potential type operators on a sphere in generalized Hölder spaces. Deponierted in VINITI, no. 1563-86, 31p., Moscow, 1986.Google Scholar
  10. [10]
    B.G. Vakulov. Spherical operators of potential type in generalized weighted Hölder space on a sphere. Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. Estestv. Nauki, (4): 5–10, 127, 1999.MathSciNetGoogle Scholar
  11. [11]
    B.G. Vakulov, N.K. Karapetiants, and L.D. Shankishvili. Spherical potentials of complex order in generalized Hölder spaces. Izv. Nats. Akad. Nauk Armenii Mat., 36(2): 54–78 (2002), 2001.MathSciNetGoogle Scholar
  12. [12]
    B.G. Vakulov, N.K. Karapetiants, and L.D. Shankishvili. Spherical convolution operators with a power-logarithmic kernel in generalized Hölder spaces. Izv. Vyssh. Uchebn. Zaved. Mat., (2): 3–14, 2003.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Natasha Samko
    • 1
  • Boris Vakulov
    • 2
  1. 1.FCT Post DocUniversidade do AlgarvePortugal
  2. 2.Rostov State UniversityRussia

Personalised recommendations