Skip to main content

Characterization of the Range of One-dimensional Fractional Integration in the Space with Variable Exponent

  • Conference paper
Operator Algebras, Operator Theory and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 181))

Abstract

Within the frameworks of weighted Lebesgue spaces with variable exponent, we give a characterization of the range of the one-dimensional Riemann-Liouville fractional integral operator in terms of convergence of the corresponding hypersingular integrals. We also show that this range coincides with the weighted Sobolev-type space L α, p(·)[(a, b)ϱ].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Almeida. Inversion of the Riesz Potential Operator on Lebesgue Spaces with Variable Exponent. Frac. Calc. Appl. Anal., 6(3):311–327, 2003.

    MathSciNet  MATH  Google Scholar 

  2. A. Almeida and S. Samko. Characterization of Riesz and Bessel potentials on variable Lebesgue spaces. J. Function Spaces and Applic., 4(2):113–144, 2006.

    MathSciNet  MATH  Google Scholar 

  3. C. Bennett and R. Sharpley. Interpolation of operators., volume 129 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1988.

    Google Scholar 

  4. L. Diening. Maximal function on generalized Lebesgue spaces L p(·). Math. Inequal. Appl., 7(2):245–253, 2004.

    MathSciNet  MATH  Google Scholar 

  5. L. Diening. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p(·) and W k,p(·). Mathem. Nachrichten, 268:31–43, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Diening, P. Hästö, and A. Nekvinda. Open problems in variable exponent Lebesgue and Sobolev spaces. In “Function Spaces, Differential Operators and Nonlinear Analysis”, Proceedings of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28–June 2, 2004, pages 38–58. Math. Inst. Acad. Sci. Czech Republick, Praha, 2005.

    Google Scholar 

  7. L. Diening and S. Samko. Hardy inequality in variable exponent Lebesgue spaces. Albert-Ludwigs-Universität Freiburg, Preprint Nr 1/2006-17.03.2006, 2006. 15 pages.

    Google Scholar 

  8. J. Duoandikoetxea. Fourier Analysis. Amer. Math. Soc., “Graduate Studies”, 2001. 222 pages.

    Google Scholar 

  9. M. Khabazi. Maximal operators in weighted L p(x) spaces. Proc. A. Razmadze Math. Inst., 135:143–144, 2004.

    MathSciNet  MATH  Google Scholar 

  10. V. Kokilashvili. On a progress in the theory of integral operators in weighted Banach function spaces. In “Function Spaces, Differential Operators and Nonlinear Analysis”, Proceedings of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28–June 2, 2004. Math. Inst. Acad. Sci. Czech Republick, Praha.

    Google Scholar 

  11. V. Kokilashvili and S. Samko. Singular Integrals in Weighted Lebesgue Spaces with Variable Exponent. Georgian Math. J., 10(1):145–156, 2003.

    MathSciNet  MATH  Google Scholar 

  12. V. Kokilashvili and S. Samko. Maximal and fractional operators in weighted L p(x) spaces. Revista Matemática Iberoamericana, 20(2):495–517, 2004.

    MathSciNet  Google Scholar 

  13. O. Kovácik and J. Rákosnik. On spaces L p(x) and W k,p(x). Czechoslovak Math. J., 41(116):592–618, 1991.

    MathSciNet  Google Scholar 

  14. H. Rafeiro and S. Samko. On multidimensional analogue of Marchaud formula for fractional Riesz-type derivatives in domains in ℝn. Fract. Calc. and Appl. Anal., 8(4):393–401, 2005.

    MathSciNet  MATH  Google Scholar 

  15. M. Růžička. Electroreological Fluids: Modeling and Mathematical Theory. Springer, Lecture Notes in Math., 2000. vol. 1748, 176 pages.

    Google Scholar 

  16. S. Samko. Differentiation and integration of variable order and the spaces L p(x). Proceed. of Intern. Conference “Operator Theory and Complex and Hypercomplex Analysis”, 12–17 December 1994, Mexico City, Mexico, Contemp. Math., Vol. 212, 203–219, 1998.

    MathSciNet  Google Scholar 

  17. S. Samko. Hardy inequality in the generalized Lebesgue spaces. Frac. Calc. and Appl. Anal, 6(4):355–362, 2003.

    MathSciNet  MATH  Google Scholar 

  18. S. Samko. On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integr. Transf. and Spec. Funct, 16(5–6):461–482, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Samko, A. Kilbas, and O. Marichev. Fractional Integrals and Derivatives. Theory and Applications. London-New-York: Gordon & Breach. Sci. Publ., (Russian edition — Fractional Integrals and Derivatives and some of their Applications, Minsk: Nauka i Tekhnika, 1987.), 1993. 1012 pages.

    MATH  Google Scholar 

  20. I.I. Sharapudinov. The topology of the space l p(t)([0, 1]). Mat. Zametki, 26(4):613–632, 1979. Engl. transl. in Math. Notes. 26 (1979), no 3–4, 796–806.

    MathSciNet  Google Scholar 

  21. E.M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Rafeiro, H., Samko, S. (2008). Characterization of the Range of One-dimensional Fractional Integration in the Space with Variable Exponent. In: Bastos, M.A., Lebre, A.B., Speck, FO., Gohberg, I. (eds) Operator Algebras, Operator Theory and Applications. Operator Theory: Advances and Applications, vol 181. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8684-9_20

Download citation

Publish with us

Policies and ethics