Advertisement

Compact Linear Operators Between Probabilistic Normed Spaces

  • Kourosh Nourouzi
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 181)

Abstract

A pair (X, N) is said to be a probabilistic normed space if X is a real vector space, N is a mapping from X into the set of all distribution functions (for xX, the distribution function N(x) is denoted by N x , and N x (t) is the value N x at t ∈ ℝ) satisfying the following conditions:
  1. (N1)

    N x (0) = 0

     
  2. (N2)

    N x (t) = 1 for all t > 0 iff x = 0

     
  3. (N3)

    N αx (t) = N x \( (\frac{t} {{|\alpha |}})\) for all α ∈ ℝ∖0,

     
  4. (N4)

    N x+y (s + t) ≥ min N x (s), N y (t) for all x, yX, and s, t ∈ ℝ0 +.

     

In this article, we study compact linear operators between probabilistic normed spaces.

Keywords

Compact operator PN-space bounded set N-compact set weakly bounded operator strongly bounded operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space. Aequationes Math. 46 (1993) 91–98.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    C. Alsina, B. Schweizer and A. Sklar, Continuity properties of probabilistic norms. J. Math. Anal. Appl. 208 (1997) 446–452.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 11,3 (2003), 687–705.zbMATHMathSciNetGoogle Scholar
  4. [4]
    T. Bag, S.K. Samanta, Fuzzy bounded linear operators. Fuzzy Sets Syst. 151 (2005), 513–547.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    K. Menger, Statistical metrics. Proc. Nat. Acad. Sci. USA 28 (1942), 535–537.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    B. Schweizer, Sklar A., Statistical metric spaces. Pacific J. Math. 10 (1960), 313–334.zbMATHMathSciNetGoogle Scholar
  7. [7]
    B. Schweizer, Sklar A., Probabilistic metric spaces. New York, Amsterdam, Oxford: North-Holland 1983.zbMATHGoogle Scholar
  8. [8]
    A.N. Šerstnev, On the motion of a random normed space. Dokl. Akad. Nauk SSSR 149 (1963) 280–283, English translation in Soviet Math. Dokl. 4 (1963) 388–390.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Kourosh Nourouzi
    • 1
    • 2
  1. 1.Department of MathematicsK. N. Toosi University of TechnologyTehranIran
  2. 2.Institute for Studies in Theoretical Physics and Mathematics (IPM)TehranIran

Personalised recommendations