Advertisement

Galois-fixed Points and K-theory for GL(n)

  • Sérgio Mendes
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 181)

Abstract

Let F be a nonarchimedean local field and let G = GL(n) = GL(n, F). Let E/F be a finite Galois extension. We use the Hasse-Herbrand function ψ E/F to identify the K-theory groups of the reduced C*-algebra C* r GL(n, F) with the Galois-fixed points of the K-theory groups of the reduced C*-algebra C* r GL(n, E).

Keywords

Local field general linear group reduced group C*-algebra K-theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Ann. of Math. Studies 120, Princeton University Press, Princeton 1989.Google Scholar
  2. [2]
    A. Borel, Automorphic L-functions. In Automorphic Forms, Representations, and L-Functions, Proc. Sympos. Pure Math. 33 (1979), 27–61.Google Scholar
  3. [3]
    C.J. Bushnell and G. Henniart, The essentially tame local Langlands correspondence, I, J. Amer. Math. Soc. 18 (2005), 685–710.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    C.J. Bushnell and G. Henniart G., The Local Langlands Conjecture for GL(2), Springer-Verlag, Berlin 2006.zbMATHGoogle Scholar
  5. [5]
    I.B. Fesenko and S.V. Vostokov, Local Fields and Their Extensions, 2nd ed., AMS, Providence 2002.zbMATHGoogle Scholar
  6. [6]
    P. Gérardin and J.P. Labesse, The solution of a base change problem for GL(2). In Automorphic Forms, Representations, and L-Functions, Proc. Sympos. Pure Math. 33 (1979) part 2, 115–133.Google Scholar
  7. [7]
    G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math. 139(2000), 439–455.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Harris and R. Taylor, On the Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Study 151, Princeton University Press 2001.Google Scholar
  9. [9]
    S. Mendes and R.J. Plymen, Base change and K-theory for GL(n), J. Noncommut. Geom. 1(2007), 311–331.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin, 1999.zbMATHGoogle Scholar
  11. [11]
    R.J. Plymen, The reduced C*-algebra of the p-adic group GL(n). J. Functional Analysis 72 (1987), 1–12.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    J.-P. Serre, Local Fields. Springer-Verlag, New York, 1979.zbMATHGoogle Scholar
  13. [13]
    J. Tate, Number theoretic background. In Automorphic Forms, Representations, and L-Functions, Proc. Sympos. Pure Math. 33 (1979) part 2, 3–26.Google Scholar
  14. [14]
    A. Weil, Basic Number Theory. Classics in Math., Springer-Verlag, 1995.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Sérgio Mendes
    • 1
  1. 1.ISCTELisbonPortugal

Personalised recommendations