Contribution of IL-17 to the pulmonary inflammatory response

  • Isabelle Couillin
  • Pamela Gasse
  • Francois Huaux
  • Silvia Schnyder-Candrian
  • Bruno Schnyder
  • François Erard
  • René Moser
  • Bernhard Ryffel
Part of the Progress in Inflammation Research book series (PIR)


Airway exposure to endotoxin and other microbial Toll-like receptor (TLR) agonists induces a rapid production of mediators including IL-1, neutrophil recruitment and bronchoconstriction, which are abrogated in mice deficient for distinct TLRs or the common adaptor molecule myeloid differentiation factor 88 (MyD88). Intranasal IL-17 administration causes acute neutrophilic lung inflammation in a proinflammatory environment. Recent investigations revealed that IL-17 is up-regulated upon endotoxin aerosol exposure and neutralization of IL-17 diminished endotoxininduced inflammation, suggesting a role of endogenous IL-17 in endotoxin-induced lung inflammation. Furthermore, administration of IL-1β mobilizes neutrophils and induces IL-17 production in the lung. Therefore, IL-17 might participates in IL-1β-induced lung inflammation. Importantly, lung injury leads to NALP3 inflammasome activation, leading to IL-1β-dependent acute inflammation. The participation of IL-17 in this response is discussed. In conclusion, TLR-agonist and injury-induced lung inflammation depend in part on IL-1β and IL-17. The role of inflammasome activation cleaving pro-IL-1β leading to mature IL-1ß and IL-1β-dependent IL-17 production and inflammation need to be explored further.


Focal Adhesion Kinase Idiopathic Pulmonary Fibrosis Lung Inflammation iNKT Cell Neutrophil Recruitment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783–801PubMedCrossRefGoogle Scholar
  2. 2.
    Beutler, B., Jiang, Z., Georgel, P., Crozat, K., Croker, B., Rutschmann, S., Du, X., and Hoebe, K. (2006). Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol 24, 353–389PubMedCrossRefGoogle Scholar
  3. 3.
    Kennedy, S. M., Christiani, D. C., Eisen, E. A., Wegman, D. H., Greaves, I. A., Olenchock, S. A., Ye, T. T., and Lu, P. L. (1987). Cotton dust and endotoxin exposureresponse relationships in cotton textile workers. Am Rev Respir Dis 135, 194–200PubMedGoogle Scholar
  4. 4.
    Michel, O., Kips, J., Duchateau, J., Vertongen, F., Robert, L., Collet, H., Pauwels, R., and Sergysels, R. (1996). Severity of asthma is related to endotoxin in house dust. Am J Respir Crit Care Med 154, 1641–1646PubMedGoogle Scholar
  5. 5.
    Schwartz, D. A., Thorne, P. S., Yagla, S. J., Burmeister, L. F., Olenchock, S. A., Watt, J. L., and Quinn, T. J. (1995). The role of endotoxin in grain dust-induced lung disease. Am J Respir Crit Care Med 152, 603–608PubMedGoogle Scholar
  6. 6.
    Lefort, J., Motreff, L., and Vargaftig, B. B. (2001). Airway administration of Escherichia coli endotoxin to mice induces glucocorticosteroid-resistant bronchoconstriction and vasopermeation. Am J Respir Cell Mol Biol 24, 345–351PubMedGoogle Scholar
  7. 7.
    Schnyder-Candrian, S., Quesniaux, V. F., Di adova, F., Maillet, I., Noulin, N., Couillin, I., Moser, R., Erard, F., Vargaftig, B. B., Ryffel, B., and Schnyder, B. (2005). Dual effects of p38 MAPK on TNF-dependent bronchoconstriction and TNF-independent neutrophil recruitment in lipopolysaccharide-induced acute respiratory distress syndrome. J Immunol 175, 262–269PubMedGoogle Scholar
  8. 8.
    Togbe, D., Schnyder-Candrian, S., Schnyder, B., Couillin, I., Maillet, I., Bihl, F., Malo, D., Ryffel, B., and Quesniaux, V. F. (2006). TLR4 gene dosage contributes to endotoxininduced acute respiratory inflammation. J Leukoc Biol 80, 451–457PubMedCrossRefGoogle Scholar
  9. 9.
    Feuillet, V., Medjane, S., Mondor, I., Demaria, O., Pagni, P. P., Galan, J. E., Flavell, R. A., and Alexopoulou, L. (2006). Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci USA 103, 12487–12492PubMedCrossRefGoogle Scholar
  10. 10.
    Uematsu, S., Jang, M. H., Chevrier, N., Guo, Z., Kumagai, Y., Yamamoto, M., Kato, H., Sougawa, N., Matsui, H., Kuwata, H. et al. (2006). Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat Immunol 7, 868–874PubMedCrossRefGoogle Scholar
  11. 11.
    Guillot, L., Medjane, S., Le-Barillec, K., Balloy, V., Danel, C., Chignard, M., and Si-Tahar, M. (2004). Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4. J Biol Chem 279, 2712–2718PubMedCrossRefGoogle Scholar
  12. 12.
    Piggott, D. A., Eisenbarth, S. C., Xu, L., Constant, S. L., Huleatt, J. W., Herrick, C. A., and Bottomly, K. (2005). MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 115, 459–467PubMedGoogle Scholar
  13. 13.
    Noulin, N., Quesniaux, V. F., Schnyder-Candrian, S., Schnyder, B., Maillet, I., Robert, T., Vargaftig, B. B., Ryffel, B., and Couillin, I. (2005). Both hemopoietic and resident cells are required for MyD88-dependent pulmonary inflammatory response to inhaled endotoxin. J Immunol 175, 6861–6869PubMedGoogle Scholar
  14. 14.
    Zeisel, M. B., Druet, V. A., Sibilia, J., Klein, J. P., Quesniaux, V., and Wachsmann, D. (2005). Cross talk between MyD88 and focal adhesion kinase pathways. J Immunol 174, 7393–7397PubMedGoogle Scholar
  15. 15.
    Gamero, A. M., and Oppenheim, J. J. (2006). IL-1 can act as number one. Immunity 24, 16–17PubMedCrossRefGoogle Scholar
  16. 16.
    Bianchi, M. E. (2007). DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81, 1–5PubMedCrossRefGoogle Scholar
  17. 17.
    Shi, Y., Evans, J. E., and Rock, K. L. (2003). Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521PubMedCrossRefGoogle Scholar
  18. 18.
    Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241PubMedCrossRefGoogle Scholar
  19. 19.
    Linden, A., Hoshino, H., and Laan, M. (2000). Airway neutrophils and interleukin-17. Eur Respir J 15, 973–977PubMedCrossRefGoogle Scholar
  20. 20.
    Linden, A., Laan, M., and Anderson, G. P. (2005). Neutrophils, interleukin-17A and lung disease. Eur Respir J 25, 159–172PubMedCrossRefGoogle Scholar
  21. 21.
    Kolls, J.K., and Lindén, A. (2004). Interleukin-17 family members and inflammation. Immunity 21, 467–476PubMedCrossRefGoogle Scholar
  22. 22.
    Laan, M., Cui, Z. H., Hoshino, H., Lotvall, J., Sjostrand, M., Gruenert, D. C., Skoogh, B. E., and Linden, A. (1999). Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol 162, 2347–2352PubMedGoogle Scholar
  23. 23.
    Miyamoto, M., Prause, O., Sjostrand, M., Laan, M., Lotvall, J., and Linden, A. (2003). Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol 170, 4665–4672PubMedGoogle Scholar
  24. 24.
    Ferretti, S., Bonneau, O., Dubois, G. R., Jones, C. E., and Trifilieff, A. (2003). IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol 170, 2106–2112PubMedGoogle Scholar
  25. 25.
    Michel, M. L., Keller, A. C., Paget, C., Fujio, M., Trottein, F., Savage, P. B., Wong, C. H., Schneider, E., Dy, M., and Leite-de-Moraes, M. C. (2007). Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204, 995–1001PubMedCrossRefGoogle Scholar
  26. 26.
    Ye, P., Rodriguez, F. H., Kanaly, S., Stocking, K. L., Schurr, J., Schwarzenberger, P., Oliver, P., Huang, W., Zhang, P., Zhang, J. et al. (2001). Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194, 519–527PubMedCrossRefGoogle Scholar
  27. 27.
    Molet, S., Hamid, Q., Davoine, F., Nutku, E., Taha, R., Page, N., Olivenstein, R., Elias, J., and Chakir, J. (2001). IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 108, 430–438PubMedCrossRefGoogle Scholar
  28. 28.
    Nakae, S., Komiyama, Y., Nambu, A., Sudo, K., Iwase, M., Homma, I., Sekikawa, K., Asano, M., and Iwakura, Y. (2002). Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387PubMedCrossRefGoogle Scholar
  29. 29.
    Schnyder-Candrian, S., Togbe, D., Couillin, I., Mercier, I., Brombacher, F., Quesniaux, V., Fossiez, F., Ryffel, B., and Schnyder, B. (2006). Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203, 2715–2725PubMedCrossRefGoogle Scholar
  30. 30.
    Schmitz, N., Kurrer, M., and Kopf, M. (2003). The IL-1 receptor 1 is critical for Th2 cell type airway immune responses in a mild but not in a more severe asthma model. Eur J Immunol 33, 991–1000PubMedCrossRefGoogle Scholar
  31. 31.
    Gasse, P., Mary, C., Guenon, I., Noulin, N., Charron, S., Schnyder-Candrian, S., Schnyder, B., Akira, S., Quesniaux, V. F., Lagente, V. et al. (2007). IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest 117, 3786–3799PubMedGoogle Scholar
  32. 32.
    Doz, E., Noulin, N., Boichot, E., Guenon, I., Fick, L., Le Bert, M., Lagente, V., Ryffel, B., Schnyder, B., Quesniaux, V. F., and Couillin, I. (2008). Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol 180, 1169–1178PubMedGoogle Scholar
  33. 33.
    Chen, C. J., Shi, Y., Hearn, A., Fitzgerald, K., Golenbock, D., Reed, G., Akira, S., and Rock, K. L. (2006). MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 116, 2262–2271PubMedCrossRefGoogle Scholar
  34. 34.
    Fremond, C. M., Togbe, D., Doz, E., Rose, S., Vasseur, V., Maillet, I., Jacobs, M., Ryffel, B., and Quesniaux, V. F. (2007). IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 179, 1178–1189PubMedGoogle Scholar
  35. 35.
    Tschopp, J., Martinon, F., and Burns, K. (2003). NALPs: A novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4, 95–104PubMedCrossRefGoogle Scholar
  36. 36.
    Petrilli, V., Dostert, C., Muruve, D. A., and Tschopp, J. (2007). The inflammasome: A danger sensing complex triggering innate immunity. Curr Opin Immunol 19, 615–622PubMedCrossRefGoogle Scholar
  37. 37.
    Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., and Tschopp, J. (2007). Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14, 1583–1589PubMedCrossRefGoogle Scholar
  38. 38.
    Chen, C. J., Kono, H., Golenbock, D., Reed, G., Akira, S., and Rock, K. L. (2007). Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13, 851–856PubMedCrossRefGoogle Scholar
  39. 39.
    Rock, K. L., and Kono, H. (2008). The inflammatory response to cell death. Annu Rev Pathol 3, 99–126PubMedCrossRefGoogle Scholar
  40. 40.
    Tager, A. M., LaCamera, P., Shea, B. S., Campanella, G. S., Selman, M., Zhao, Z., Polosukhin, V., Wain, J., Karimi-Shah, B. A., Kim, N. D. et al. (2008). The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 14, 45–54PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Isabelle Couillin
    • 1
    • 2
  • Pamela Gasse
    • 1
  • Francois Huaux
    • 3
  • Silvia Schnyder-Candrian
    • 1
    • 4
  • Bruno Schnyder
    • 1
    • 4
  • François Erard
    • 1
  • René Moser
    • 4
  • Bernhard Ryffel
    • 1
  1. 1.University of Orléans and Molecular Immunology and EmbryologyOrleansFrance
  2. 2.Key-Obs S.A.OrleansFrance
  3. 3.ULB BruxellesBelgium
  4. 4.Biomedical Research FoundationSBFMatzingenSwitzerland

Personalised recommendations