Other sources of IL-17: Invariant natural killer T cells

  • Marie-Laure Miche
  • Maria C. Leite-de-Moraes
Part of the Progress in Inflammation Research book series (PIR)


Interleukin-17 (IL-17) plays a major role in various models of immune-mediated tissue injury, including organ-specific autoimmunity, allergic disorders and microbial infections. Th17 cells are currently the most thoroughly characterized source of IL-17 credited for causing and sustaining the tissue damage mediated by this cytokine. Similarly to their Th1 and Th2 counterpart, Th17 cells depend on specific factors for their differentiation from naïve T cell precursors, before acquiring their typical cytokine profile. However, this is not the case for all IL-17-producing cells, particularly for a subset of invariant natural killer T cells, termed iNKT17, which are ready to produce this cytokine immediately upon stimulation, in keeping with their capacity to intervene during early stages of the inflammatory response.


Th17 Cell Allergic Asthma iNKT Cell Experimental Allergic Encephalomyelitis Airway Neutrophilia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2: 933–944PubMedCrossRefGoogle Scholar
  2. 2.
    Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25: 821–852PubMedCrossRefGoogle Scholar
  3. 3.
    Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21: 467–476PubMedCrossRefGoogle Scholar
  4. 4.
    Lisbonne M, Leite-de-Moraes MC (2003) Invariant Valpha14 NKT lymphocytes: A double-edged immuno-regulatory T cell population. Eur Cytokine Netw 14: 4–14PubMedGoogle Scholar
  5. 5.
    Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25: 297–336PubMedCrossRefGoogle Scholar
  6. 6.
    Kronenberg M (2005) Toward an understanding of NKT cell biology: Progress and paradoxes. Annu Rev Immunol 23: 877–900PubMedCrossRefGoogle Scholar
  7. 7.
    Michel M-L, Castro Keller A, Paget C, Fujio M, Trottein F, Savage PB, Wong CH, Schneider E, Dy M, Leite-de-Moraes MC (2007) Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J Exp Med 204: 995–1001PubMedCrossRefGoogle Scholar
  8. 8.
    Barral DC, Brenner MB (2007) CD1 antigen presentation: How it works. Nat Rev Immunol 7: 929–941PubMedCrossRefGoogle Scholar
  9. 9.
    Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192: 741–754PubMedCrossRefGoogle Scholar
  10. 10.
    Paget C, Mallevaey T, Speak AO, Torres D, Fontaine J, Sheehan KC, Capron M, Ryffel B, Faveeuw C, Leite de Moraes M et al (2007) Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27: 597–609PubMedCrossRefGoogle Scholar
  11. 11.
    Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia MR, Zajonc DM, Ben-Menachem G, Ainge GD, Painter GF et al (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7: 978–986PubMedCrossRefGoogle Scholar
  12. 12.
    Smyth MJ, Crowe NY, Pellicci DG, Kyparissoudis K, Kelly JM, Takeda K, Yagita H, Godfrey DI (2002) Sequential production of interferonamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 99: 1259–1266PubMedCrossRefGoogle Scholar
  13. 13.
    Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, Taniguchi M, Grusby MJ, DeKruyff RH, Umetsu DT (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9: 582–588PubMedCrossRefGoogle Scholar
  14. 14.
    Lisbonne M, Diem S, de Castro Keller A, Lefort J, Araujo LM, Hachem P, Fourneau JM, Sidobre S, Kronenberg M, Taniguchi M et al (2003) Cutting edge: Invariant V alpha 14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J Immunol 171: 1637–1641PubMedGoogle Scholar
  15. 15.
    Leite-De-Moraes MC, Moreau G, Arnould A, Machavoine F, Garcia C, Papiernik M, Dy M (1998) IL-4-producing NK T cells are biased towards IFN-gamma production by IL-12. Influence of the microenvironment on the functional capacities of NK T cells. Eur J Immunol 28: 1507–1515PubMedCrossRefGoogle Scholar
  16. 16.
    Leite-De-Moraes MC, Hameg A, Arnould A, Machavoine F, Koezuka Y, Schneider E, Herbelin A, Dy M (1999) A distinct IL-18-induced pathway to fully activate NK T lymphocytes independently from TCR engagement. J Immunol 163: 5871–5876PubMedGoogle Scholar
  17. 17.
    Leite-De-Moraes MC, Hameg A, Pacilio M, Koezuka Y, Taniguchi M, Van Kaer L, Schneider E, Dy M, Herbelin A (2001) IL-18 enhances IL-4 production by ligand-activated 4 Lisbonne M, Leite-de-Moraes MC (2003) Invariant Valpha14 NKT lymphocytes: A double-edged immuno-regulatory T cell population. Eur Cytokine Netw 14: 4–14Google Scholar
  18. 18.
    Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A (2002) A thymic precursor to the NK T cell lineage. Science 296: 553–555PubMedCrossRefGoogle Scholar
  19. 19.
    Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, Odden AR, Shellito JE, Bagby GJ, Nelson S et al (2005) Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 202: 761–769PubMedCrossRefGoogle Scholar
  20. 20.
    Deng JC, Moore TA, Newstead MW, Zeng X, Krieg AM, Standiford TJ (2004) CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection. J Immunol 173: 5148–5155PubMedGoogle Scholar
  21. 21.
    Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13: 139–145PubMedCrossRefGoogle Scholar
  22. 22.
    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13: 715–725PubMedCrossRefGoogle Scholar
  23. 23.
    Sharif S, Arreaza GA, Zucker P, Mi QS, Sondhi J, Naidenko OV, Kronenberg M, Koezuka Y, Delovitch TL, Gombert JM et al (2001) Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 7: 1057–1062PubMedCrossRefGoogle Scholar
  24. 24.
    Jain R, Tartar DM, Gregg RK, Divekar RD, Bell JJ, Lee HH, Yu P, Ellis JS, Hoeman CM, Franklin CL et al (2008) Innocuous IFNgamma induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. J Exp Med 205: 207–218PubMedCrossRefGoogle Scholar
  25. 25.
    Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V, Fossiez F, Ryffel B, Schnyder B (2006) Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203: 2715–2725PubMedCrossRefGoogle Scholar
  26. 26.
    Lockhart E, Green AM, Flynn JL (2006) IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177: 4662–4669PubMedGoogle Scholar
  27. 27.
    Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y et al (2007) IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol 178: 3786–3796PubMedGoogle Scholar
  28. 28.
    Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y (2007) Resident Vd1+ ?d T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol 178: 4466–4472PubMedGoogle Scholar
  29. 29.
    Peterman GM, Spencer C, Sperling AI, Bluestone JA (1993) Role of gamma delta T cells in murine collagen-induced arthritis. J Immunol 151: 6546–6558PubMedGoogle Scholar
  30. 30.
    Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O’Brien RL (2007) Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells. J Immunol 179: 5576–5583PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Marie-Laure Miche
    • 1
  • Maria C. Leite-de-Moraes
    • 1
  1. 1.CNRS (Centre National de la Recherche Scientifique)UMR (Unité Mixte de Recherche) 8147, Faculté de Médecine René Descartes, Paris V, Hôpital NeckerParis, Cedex 15France

Personalised recommendations