IL-17A and Th17 cells as therapeutic targets for autoimmune diseases

  • Franco Di Padova
Part of the Progress in Inflammation Research book series (PIR)


The definition of the CD3+ CD4+ Th17 cell subset and the identification of the IL-23-Th17 axis have introduced new paradigms to explain the origin of autoimmune events in animal models, subverting the established Th1-Th2 paradigm. IL-17A has been pivotal for the discovery of the Th17 lineage, which probably evolved as an arm of the adaptive immune system for host protection against extracellular bacteria and fungi. IL-17A, is the founding member of the IL-17 family composed of six members. Th17 cells and IL-17A have been implicated in a variety of inflammatory and autoimmune diseases in rodents. In these models, Th17 cells are pivotal in the pathogenesis of the disease and IL-17A appears to be the main mediator, but the situation might be different in humans. In some human pathological conditions, in addition to Th17 cells, other IL-17A-producing cells have been described, including CD8+ T cells, astrocytes, macrophages and Langerhans cells. The therapeutic effect of some new biologics can now, at least in part, be explained by their interference with mediators involved in the generation of Th17 cells, but more specific treatments would be valuable to dissect these intricate networks. An antibody neutralizing IL-17A is being evaluated under different autoimmune conditions. This approach might not only benefit patients, but, by neutralizing IL-17A selectively, might also help to define the role of this cytokine in autoimmune disorders and contribute to a new wave of selective and targeted therapies.


Th17 Cell Juvenile Idiopathic Arthritis Th17 Cell Subset Chronic Active Lesion Ankylose Spondilitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25: 821–852PubMedCrossRefGoogle Scholar
  2. 2.
    Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177: 566–573PubMedGoogle Scholar
  3. 3.
    Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448: 484–487PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8: 950–957PubMedCrossRefGoogle Scholar
  5. 5.
    Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52: 65–70PubMedCrossRefGoogle Scholar
  6. 6.
    Tzartos JS, Friese MA, Craner M, Palace J, Newcombe J, Esiri MM, Fugger L (2007) Interleukin-17 production in CNS-infiltrating T-cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172: 146–155PubMedCrossRefGoogle Scholar
  7. 7.
    Coury F, Annels N, Rivollier A, Olsson S, Santoro A, Speziani C, Azocar O, Flacher M, Djebali S, Tebib J et al (2008) Langerhans cell histiocytosis reveals a new IL-17Adependent pathway of dendritic cell fusion. Nat Med 14: 81–87PubMedCrossRefGoogle Scholar
  8. 8.
    Spriggs, MK (1997) Interleukin-17 and its receptor. J Clin Immunol 17: 366–369PubMedCrossRefGoogle Scholar
  9. 9.
    Yao, Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK (1995) Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3: 811–821PubMedCrossRefGoogle Scholar
  10. 10.
    Moseley TA, Haudenschild DR, Rose L, Reddi AH (2003) Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 14: 155–174PubMedCrossRefGoogle Scholar
  11. 11.
    Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21: 467–476PubMedCrossRefGoogle Scholar
  12. 12.
    Kawaguchi M, Adachi M, Oda N, Kokubu F, Huang SK (2004) IL-17 cytokine family. J Allergy Clin Immunol 114: 1265–1273PubMedCrossRefGoogle Scholar
  13. 13.
    Starnes T, Robertson MJ, Sledge G, Kelich S, Nakshatri H, Broxmeyer HE, Hromas R (2001) Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol 167: 4137–4140PubMedGoogle Scholar
  14. 14.
    McAllister F, Henry A, Kreindler JL, Dubin PJ, Ulrich L, Steele C, Finder JD, Pilewski JM, Carreno BM, Goldman SJ et al (2005) Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-a and granulocyte colony-stimulating factor in bronchial epithelium: Implications for airway inflammation in cystic fibrosis. J Immunol 175: 404–412PubMedGoogle Scholar
  15. 15.
    Lubberts E (2003) The role of IL-17 and family members in the pathogenesis of arthritis. Curr Opin Investig Drugs 4: 572–577PubMedGoogle Scholar
  16. 16.
    Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z et al (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205: 1063–1075PubMedCrossRefGoogle Scholar
  17. 17.
    Akimzhanov AM, Yang XO, Dong C (2007) Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J Biol Chem 282: 5969–5972PubMedCrossRefGoogle Scholar
  18. 18.
    Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, Collins M, Goldman SJ, Dunussi-Joannopoulos K, Williams CMM, Wright JF et al (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179: 7791–7799PubMedGoogle Scholar
  19. 19.
    Wright JF, Guo Y, Quazi A, Luxenberg DP, Bennett F, Ross JF, Qiu Y, Whitters MJ, Tomkinson KN, Dunussi-Joannopoulos K et al (2007) Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem 282: 13447–13455PubMedCrossRefGoogle Scholar
  20. 20.
    Chang SH, Dong C (2007) A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res 17: 435–440PubMedGoogle Scholar
  21. 21.
    Kuestner RE, Taft DW, Haran A, Brandt CS, Brender T, Lum K, Harder B, Okada S, Ostrander CD, Kreindler JL et al (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179: 5462–5473PubMedGoogle Scholar
  22. 22.
    Lee J, Ho WH, Maruoka M, Corpuz RT, Baldwin DT, Foster JS, Goddard AD, Yansura DG, Vandlen RL, Wood WI et al (2001). IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 276: 1660–1664PubMedCrossRefGoogle Scholar
  23. 23.
    Zrioual S, Toh ML, Tournadre A, Zhou Y, Cazalis MA, Pachot A, Miossec V, Miossec P (2008) IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine. expression in synoviocytes and are overexpressed in rheumatoid blood. J Immunol 180: 655–663PubMedGoogle Scholar
  24. 24.
    Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, Tocker J, Peschon J (2006) Cutting edge: Interleukin 17 signals through a heteromeric receptor complex. J Immunol 177: 36–39PubMedGoogle Scholar
  25. 25.
    Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8: 639–646PubMedCrossRefGoogle Scholar
  26. 26.
    Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103: 1345–1352PubMedCrossRefGoogle Scholar
  27. 27.
    Infante-Duarte C, Horton HF, Byrne MC, Kamradt T (2000) Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 165: 6107–6115PubMedGoogle Scholar
  28. 28.
    Nistala K, Moncrieffe H, Newton KR, Varsani H, Hunter P, Wedderburn LR (2008) Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum 58: 875–887PubMedCrossRefGoogle Scholar
  29. 29.
    Page G, Sattler A, Kersten S, Thiel A, Radbruch A, Miossec P (2004) Plasma cell-like morphology of Th1-cytokine-producing cells associated with the loss of CD3 expression. Am J Pathol 164: 409–417PubMedGoogle Scholar
  30. 30.
    Liu Y (2002) Uncover the mystery of plasmacytoid dendritic cell precursors or type 1 interferon producing cells by serendipity. Hum Immunol 63: 1067–1071PubMedCrossRefGoogle Scholar
  31. 31.
    Fricke I, Mitchell D, Mittelsta J, Lehan N, Heine H, Goldmann T, Bohle A, Brandau S (2006) Mycobacteria induce IFN-? production in human dendritic cells via triggering of TLR2. J Immunol 176: 5173–5182PubMedGoogle Scholar
  32. 32.
    Teunissen MB, Koomen CW, de Waal Malefyt R, Wierenga EA, Bos JD (1998) Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 111: 645–649PubMedCrossRefGoogle Scholar
  33. 33.
    Li J, Li D, Tan Z (2004) The expression of interleukin-17, interferon-gamma, and macrophage inflammatory protein-3 alpha mRNA in patients with psoriasis vulgaris. J Huazhong Univ Sci Technol Med Sci 24: 294–296PubMedGoogle Scholar
  34. 34.
    Arican O, Aral M, Sasmaz S, Ciragil P (2005) Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005: 273–279PubMedCrossRefGoogle Scholar
  35. 35.
    Bos JD, Hagenaars C, Das PK Krieg SR, Voorn WJ, Kapsenberg ML (1989) Predominance of’ memory’ T cells (CD4+, CDw29+) over’ naive’ T cells (CD4+, CD45R+) in both normal and diseased human skin. Arch Dermatol Res 281: 24–30PubMedCrossRefGoogle Scholar
  36. 36.
    Bos JD, Zonneveld I, Das PK Krieg SR, van der Loos CM, Kapsenberg ML (1987) The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol 88: 569–573PubMedCrossRefGoogle Scholar
  37. 37.
    Bovenschen HJ, Seyger MMB, Van De Kerkhof PCM. (2005) Plaque psoriasis vs. atopic dermatitis and lichen planus: A comparison for lesional T-cell subsets, epidermal proliferation and differentiation. Br J Dermatol 153: 72–78PubMedCrossRefGoogle Scholar
  38. 38.
    Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, Bowman EP, Krueger JG (2008) Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 128: 1207–1211PubMedCrossRefGoogle Scholar
  39. 39.
    Nielsen OH, Kirman I, Rudiger N, Hendel J, Vainer B (2003) Upregulation of interleukin-12 and-17 in active inflammatory bowel disease. Scand J Gastroenterol 38: 180–185PubMedCrossRefGoogle Scholar
  40. 40.
    Gottfried E, Kunz-Schughart LA, Weber A, Rehli M, Peuker A, Muller A, Kastenberger M, Brockhoff G, Andreesen R, Kreutz M (2008) Expression of CD68 in non-myeloid cell types. Scand J Immunol 67: 453–463PubMedCrossRefGoogle Scholar
  41. 41.
    Friese MA, Fugger L (2005) Autoreactive CD8(+) T cells in multiple sclerosis: A new target for therapy? Brain 128: 1747–1763PubMedCrossRefGoogle Scholar
  42. 42.
    Meeuwsen S, Persoon-Deen C, Bsibsi M, Ravid R, van Noort JM (2003) Cytokine, chemokine and growth factor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli. Glia 43: 243–253PubMedCrossRefGoogle Scholar
  43. 43.
    Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8: 500–508PubMedCrossRefGoogle Scholar
  44. 44.
    Ishizu T, Osoegawa M, Mei FJ, Kikuchi H, Tanaka M, Takakura Y, Minohara M, Murai H, Mihara F, Taniwaki T et al (2005) Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 128: 988–1002PubMedCrossRefGoogle Scholar
  45. 45.
    Laman JD, Leenen PJM, Annels NE, Hogendoorn PCW, Egeler RM (2003) Langerhanscell histiocytosis’ insight into DC biology’. Trends Immunol 24: 190–196PubMedCrossRefGoogle Scholar
  46. 46.
    Hizawa N, Kawaguchi M, Huang SK, Nishimura M (2006) Role of interleukin-17F in chronic inflammatory and allergic lung disease. Clin Exp Allergy 36: 1109–1114PubMedCrossRefGoogle Scholar
  47. 47.
    Andoh A, Zhang Z, Inatomi O, Fujino S, Deguchi Y, Araki Y, Tsujikawa T, Kitoh K, Kim-Mitsuyama S, Takayanagi A et al (2005) Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterol 129: 969–984CrossRefGoogle Scholar
  48. 48.
    Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Fariñas MS, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, Lowes MA et al (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 204: 3183–3194PubMedCrossRefGoogle Scholar
  49. 49.
    Massarotti EM (2008) Clinical and patient-reported outcomes in clinical trials of Abatacept in the treatment of rheumatoid arthritis. Clin Therapeutics 30: 429–442CrossRefGoogle Scholar
  50. 50.
    Chen Z, Tato CM, Muul L, Laurence A, O’Shea JJ (2007) Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum 56: 2936–2946PubMedCrossRefGoogle Scholar
  51. 51.
    Ohsugi Y, Kishimoto T (2008) The recombinant humanized anti-IL-6 receptor antibody tocilizumab, an innovative drug for the treatment of rheumatoid arthritis. Expert Opin Biol Ther 8: 669–681PubMedCrossRefGoogle Scholar
  52. 52.
    Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, Li S, Dooley LT, Gordon KB (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371: 1665–1674PubMedCrossRefGoogle Scholar
  53. 53.
    Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, Guzzo C, Hsu MC, Wang Y, Li S et al (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371: 1675–1684PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Franco Di Padova
    • 1
  1. 1.Novartis Institutes for Biomedical ResearchBaselSwitzerland

Personalised recommendations