IL-17/23, potential targets for Crohn’s disease

  • Isabelle Wolowczuk
  • Matthieu Allez
  • Mathias Chamaillard
Part of the Progress in Inflammation Research book series (PIR)


Biological agents have profoundly changed the therapeutical management of Crohn’s disease and ulcerative colitis, the major clinical subentities of inflammatory bowel disease (IBD). In the gut mucosa, the interleukin (IL)-23 drives the development of the effector Th17 lineage, which plays an essential role in maintaining tissue homeostasis and in repelling enteropathogenic infections. Conversely, aberrant IL-17- and IL-23-dependent signaling have been recently linked to the predisposition of IBD, prioritizing IL-17 and/or IL-23 signaling as potential therapeutical targets in such common immunopathologies. Clinical trials are currently evaluating the safety and efficacy of fully human recombinant immunoglobulins neutralizing IL-12p40 or IL-17. Consistent with a physiopathological role of IL-17 and IL-23 in Crohn’s disease, preliminary data showed encouraging results in regards to tolerability and beneficial effects. Long-term follow-up monitoring is now eagerly awaited to provide evidence of a durable protective role of IL-12/IFN-? in host defense against pathogens, as well as additional clinical trials to assess the efficacy of anti-IL-23p19 treatment.


Inflammatory Bowel Disorder Certolizumab Pegol Clinical Disease Activity Index Colonic Lamina Propria Clinical Disease Activity Index Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fiocchi C (1998) Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology 115: 182–205PubMedCrossRefGoogle Scholar
  2. 2.
    Korzenik JR, Podolsky DK (2006) Evolving knowledge and therapy of inflammatory bowel disease. Nat Rev Drug Discov 5: 197–209PubMedCrossRefGoogle Scholar
  3. 3.
    Pizarro TT, Cominelli F (2007) Cytokine therapy for Crohn’s disease: Advances in translational research. Annu Rev Med 58: 433–444PubMedCrossRefGoogle Scholar
  4. 4.
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314: 1461–1463PubMedCrossRefGoogle Scholar
  5. 5.
    Neurath MF (2007) IL-23: A master regulator in Crohn disease. Nat Med 13: 26–28PubMedCrossRefGoogle Scholar
  6. 6.
    Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W et al (2006) IL-23 is essential for T cell mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116: 1310–1316PubMedCrossRefGoogle Scholar
  7. 7.
    Fedorak RN, Gangl A, Elson CO, Rutgeerts P, Schreiber S, Wild G, Hanauer SB, Kilian A, Cohard M, LeBeaut A, Feagan B (2000) Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 119: 1473–1482PubMedCrossRefGoogle Scholar
  8. 8.
    Schreiber S, Fedorak RN, Nielsen OH, Wild G, Williams CN, Nikolaus S, Jacyna M, Lashner BA, Gangl A, Rutgeerts P et al (2000) Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 119: 1461–1472PubMedCrossRefGoogle Scholar
  9. 9.
    Colombel JF, Rutgeerts P, Malchow H, Jacyna M, Nielsen OH, Rask-Madsen J, Van Deventer S, Ferguson A, Desreumaux P, Forbes A et al (2001) Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease. Gut 49: 42–46PubMedCrossRefGoogle Scholar
  10. 10.
    Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4: 754–759PubMedCrossRefGoogle Scholar
  11. 11.
    Sands BE, Winston BD, Salzberg B, Safdi M, Barish C, Wruble L, Wilkins R, Shapiro M, Schwertschlag US (2002) Randomized, controlled trial of recombinant human interleukin-11 in patients with active Crohn’s disease. Aliment Pharmacol Ther 16: 399–406PubMedCrossRefGoogle Scholar
  12. 12.
    Korzenik JR, Dieckgraefe BK (2005) An open-labelled study of granulocyte colonystimulating factor in the treatment of active Crohn’s disease. Aliment Pharmacol Ther 21: 391–400PubMedCrossRefGoogle Scholar
  13. 13.
    Feagan BG, Anderson F, Radford-Smith GL, Solovyov O, Zurdel-Dillinger S (2007) Efficacy and safety of sargramostim in moderate to severe Crohn’s disease: Results of N.O.V.E.L. 4, a Phase III multicenter study. Gastroenterology 132: A103CrossRefGoogle Scholar
  14. 14.
    Korzenik JR, Dieckgraefe BK, Valentine JF, Hausman DF, Gilbert MJ (2005) Sargramostim for active Crohn’s disease. N Engl J Med 352: 2193–2201PubMedCrossRefGoogle Scholar
  15. 15.
    Present DH, Rutgeerts P, Targan S, Hanauer SB, Mayer L, van Hogezand RA, Podolsky DK, Sands BE, Braakman T, DeWoody KL et al (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 340: 1398–1405PubMedCrossRefGoogle Scholar
  16. 16.
    Sands BE, Anderson FH, Bernstein CN, Chey WY, Feagan BG, Fedorak RN, Kamm MA, Korzenik JR, Lashner BA, Onken JE et al (2004) Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med 350: 876–885PubMedCrossRefGoogle Scholar
  17. 17.
    Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J, Travers S, Rachmilewitz D, Hanauer SB, Lichtenstein GR et al (2005) Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 353: 2462–2476PubMedCrossRefGoogle Scholar
  18. 18.
    Colombel JF, Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Panaccione R, Schreiber S, Byczkowski D, Li J, Kent JD, Pollack PF (2007) Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: The CHARM trial. Gastroenterology 132: 52–65PubMedCrossRefGoogle Scholar
  19. 19.
    Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh D, Panaccione R, Wolf D, Pollack P (2006) Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: The CLASSIC-I trial. Gastroenterology 130: 323–333; quiz 591PubMedCrossRefGoogle Scholar
  20. 20.
    Schreiber S, Sandborn WJ (2006) CLASSIC-I study the efficacy of adalimumab. Gastroenterology 130: 1929–1930PubMedCrossRefGoogle Scholar
  21. 21.
    Schreiber S, Khaliq-Kareemi M, Lawrance IC, Thomsen OO, Hanauer SB, McColm J, Bloomfield R, Sandborn WJ (2007) Maintenance therapy with certolizumab pegol for Crohn’s disease. N Engl J Med 357: 239–250PubMedCrossRefGoogle Scholar
  22. 22.
    Sandborn WJ, Feagan BG, Stoinov S, Honiball PJ, Rutgeerts P, Mason D, Bloomfield R, Schreiber S (2007) Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med 357: 228–238PubMedCrossRefGoogle Scholar
  23. 23.
    Cominelli F (2004) Cytokine-based therapies for Crohn’s disease-New paradigms. N Engl J Med 351: 2045–2048PubMedCrossRefGoogle Scholar
  24. 24.
    Rutgeerts P, Van Assche G, Vermeire S (2004) Optimizing anti-TNF treatment in inflammatory bowel disease. Gastroenterology 126: 1593–1610PubMedCrossRefGoogle Scholar
  25. 25.
    Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Andoh A, Matsumoto T, Yamamura T, Azuma J, Nishimoto N, Yoshizaki K et al (2004) A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 126: 989–996; discussion 947PubMedCrossRefGoogle Scholar
  26. 26.
    Creed TJ, Probert CS, Norman MN, Moorghen M, Shepherd NA, Hearing SD, Dayan CM (2006) Basiliximab for the treatment of steroid-resistant ulcerative colitis: Further experience in moderate and severe disease. Aliment Pharmacol Ther 23: 1435–1442PubMedCrossRefGoogle Scholar
  27. 27.
    Van Assche G, Sandborn WJ, Feagan BG, Salzberg BA, Silvers D, Monroe PS, Pandak WM, Anderson FH, Valentine JF, Wild GE et al (2006) Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: A randomised, double blind, placebo controlled, dose ranging trial. Gut 55: 1568–1574PubMedCrossRefGoogle Scholar
  28. 28.
    Hommes DW, Mikhajlova TL, Stoinov S, Stimac D, Vucelic B, Lonovics J, Zakuciova M, D’Haens G, Van Assche G, Ba S et al (2006) Fontolizumab, a humanised antiinterferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut 55: 1131–1137PubMedCrossRefGoogle Scholar
  29. 29.
    Reinisch W, Hommes DW, Van Assche G, Colombel JF, Gendre JP, Oldenburg B, Teml A, Geboes K, Ding H, Zhang L et al (2006) A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn’s disease. Gut 55: 1138–1144PubMedCrossRefGoogle Scholar
  30. 30.
    Wada Y, Lu R, Zhou D, Chu J, Przewloka T, Zhang S, Li L, Wu Y, Qin J, Balasubramanyam V et al (2007) Selective abrogation of Th1 response by STA-5326, a potent IL-12/ IL-23 inhibitor. Blood 109: 1156–1164PubMedCrossRefGoogle Scholar
  31. 31.
    Burakoff R, Barish CF, Riff D, Pruitt R, Chey WY, Farraye FA, Shafran I, Katz S, Krone CL, Vander Vliet M et al (2006) A phase 1/2A trial of STA 5326, an oral interleu kin-12/23 inhibitor, in patients with active moderate to severe Crohn’s disease. Inflamm Bowel Dis 12: 558–565PubMedCrossRefGoogle Scholar
  32. 32.
    Mannon PJ, Fuss IJ, Mayer L, Elson CO, Sandborn WJ, Present D, Dolin B, Goodman N, Groden C, Hornung RL et al (2004) Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 351: 2069–2079PubMedCrossRefGoogle Scholar
  33. 33.
    Fuss IJ, Becker C, Yang Z, Groden C, Hornung RL, Heller F, Neurath MF, Strober W, Mannon PJ (2006) Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis 12: 9–15PubMedCrossRefGoogle Scholar
  34. 34.
    Reddy M, Davis C, Wong J, Marsters P, Pendley C, Prabhakar U (2007) Modulation of CLA, IL-12R, CD40L, and IL-2Ralpha expression and inhibition of IL-12-and IL-23-induced cytokine secretion by CNTO 1275. Cell Immunol 247: 1–11PubMedCrossRefGoogle Scholar
  35. 35.
    Sandborn WJ, Feagan BG, Fedorak R, Sherl E, Fleisher M, Katz S, Johanns J, Blank M, Rutgeerts P (2007) A multicenter, randomized, phase 2a study of human monoclonal antibody to IL-12/23p40 (CNTO 1275) in patients with moderately to severely active Crohn’s disease. Gastroenterology 132: A51Google Scholar
  36. 36.
    De Villiers W, Toedter G, Liu G, Blank M, Plevy S (2007) The effect of human monoclonal antibody to IL-12/23p40 (Cnto 1275) on serum levels of inflammation-related proteins in patients with moderately to severely active Crohn’s disease. Gastroenterology 132: A698CrossRefGoogle Scholar
  37. 37.
    Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204: 1849–1861PubMedCrossRefGoogle Scholar
  38. 38.
    Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C, Pfennig S, Jurgens M, Schmechel S, Konrad A et al (2007) Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): Upregulated colonic IL-17F expression in active Crohn’s disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis 14: 437-445Google Scholar
  39. 39.
    Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441: 231–234PubMedCrossRefGoogle Scholar
  40. 40.
    Kullberg MC, Jankovic D, Feng CG, Hue S, Gorelick PL, McKenzie BS, Cua DJ, Powrie F, Cheever AW, Maloy KJ, Sher A (2006) IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med 203: 2485–2494PubMedCrossRefGoogle Scholar
  41. 41.
    van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA, Kapsenberg ML, de Jong EC (2007) Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27: 660–669PubMedCrossRefGoogle Scholar
  42. 42.
    Niess JH, Leithauser F, Adler G, Reimann J (2008) Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J Immunol 180: 559–568PubMedGoogle Scholar
  43. 43.
    Fukata M, Breglio K, Chen A, Vamadevan AS, Goo T, Hsu D, Conduah D, Xu R, Abreu MT (2008) The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease. J Immunol 180: 1886–1894PubMedGoogle Scholar
  44. 44.
    Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52: 65–70PubMedCrossRefGoogle Scholar
  45. 45.
    Lytle C, Tod TJ, Vo KT, Lee JW, Atkinson RD, Straus DS (2005) The peroxisome proliferator-activated receptor gamma ligand rosiglitazone delays the onset of inflammatory bowel disease in mice with interleukin 10 deficiency. Inflamm Bowel Dis 11: 231–243PubMedCrossRefGoogle Scholar
  46. 46.
    Elson CO, Cong Y, Weaver CT, Schoeb TR, McClanahan TK, Fick RB, Kastelein RA (2007) Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology 132: 2359–2370PubMedCrossRefGoogle Scholar
  47. 47.
    Sugimoto K, Ogawa A, Shimomura Y, Nagahama K, Mizoguchi A, Bhan AK (2007) Inducible IL-12-producing B cells regulate Th2-mediated intestinal inflammation. Gastroenterology 133: 124–136PubMedCrossRefGoogle Scholar
  48. 48.
    Nagahama K, Ogawa A, Shirane K, Shimomura Y, Sugimoto K, Mizoguchi A (2008) Protein kinase C theta plays a fundamental role in different types of chronic colitis. Gastroenterology 134: 459–469PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK (2006) Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis 12: 382–388PubMedCrossRefGoogle Scholar
  50. 50.
    Casanova JL, Abel L (2007) Primary immunodeficiencies: A field in its infancy. Science 317: 617–619PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Isabelle Wolowczuk
    • 1
  • Matthieu Allez
    • 2
  • Mathias Chamaillard
    • 3
  1. 1.Laboratoire NIEInstitut Pasteur de Lille, and IFR 142LilleFrance
  2. 2.Service de Gastroentérologie, Hôpital Saint-LouisInsermParisFrance
  3. 3.InsermLilleFrance

Personalised recommendations