Targeting Th17 cells in CNS immune pathology

  • Aaron J. Martin
  • Stephen D. Miller
Part of the Progress in Inflammation Research book series (PIR)


Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) mediated by autoreactive T lymphocytes. A new class of CD4+ T cells, the Th17 lineage, has recently been described and has been implicated in initiating immune responses against CNS autoantigens. Findings in experimental autoimmune encephalomyelitis (EAE, the animal model for MS) suggest that targeting Th17 cells may have a beneficial outcome for patients suffering from MS. Several existing and emerging therapeutic strategies are discussed based on the manner in which they target Th17-mediated autoimmunity: lymphocyte depletion, prevention of Th17 development, and prevention of Th17 function. T cell-ablating agents are not Th17 specific and are associated with toxicity and opportunistic infections. The prevention of Th17 differentiation can be achieved experimentally by neutralizing cytokines required for Th17 development and by the administration of cytokines or other chemicals that interfere with differentiation; however, these strategies may also lead to disease. Prevention of functional Th17 responses can be accomplished by inhibiting leukocyte trafficking or by neutralizing IL-17. While several promising therapeutic candidates have been identified using EAE and clinical experimentation, both the risks of immunomodulation as well as the efficacy of such candidates in human patients need to be completely characterized and carefully considered.


Multiple Sclerosis Th17 Cell Experimental Autoimmune Encephalomyelitis Multiple Sclerosis Patient Glatiramer Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McFarland HF, Martin R (2007) Multiple sclerosis: A complicated picture of autoimmunity. Nat Immunol 8: 913–919PubMedCrossRefGoogle Scholar
  2. 2.
    Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8: 345–350PubMedCrossRefGoogle Scholar
  3. 3.
    Gutcher I, Becher B (2007) APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 117: 1119–1127PubMedCrossRefGoogle Scholar
  4. 4.
    Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: An effector CD4 T cell lineage with regulatory T cell ties. Immunity 24: 677–688PubMedCrossRefGoogle Scholar
  5. 5.
    Stockinger B, Veldhoen M (2007) Differentiation and function of Th17 T cells. Curr Opin Immunol 19: 281–286PubMedCrossRefGoogle Scholar
  6. 6.
    Furuzawa-Carballeda J, Vargas-Rojas MI, Cabral AR (2007) Autoimmune inflammation from the Th17 perspective. Autoimmun Rev 6: 169–175PubMedCrossRefGoogle Scholar
  7. 7.
    Gocke AR, Cravens PD, Ben LH, Hussain RZ, Northrop SC, Racke MK, Lovett-Racke AE (2007) T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J Immunol 178: 1341–1348PubMedGoogle Scholar
  8. 8.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201: 233–240PubMedCrossRefGoogle Scholar
  9. 9.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421: 744–748PubMedCrossRefGoogle Scholar
  10. 10.
    Vaknin-Dembinsky A, Balashov K, Weiner HL (2006) IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 176: 7768–7774PubMedGoogle Scholar
  11. 11.
    Steinman L, Zamvil SS (2005) Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol 26: 565–571PubMedCrossRefGoogle Scholar
  12. 12.
    Cree B (2006) Emerging monoclonal antibody therapies for multiple sclerosis. Neurologist 12: 171–178PubMedCrossRefGoogle Scholar
  13. 13.
    Holmoy T, Vartdal F (2007) The immunological basis for treatment of multiple sclerosis. Scand J Immunol 66: 374–382PubMedCrossRefGoogle Scholar
  14. 14.
    Gonsette RE (2007) Compared benefit of approved and experimental immunosuppressive therapeutic approaches in multiple sclerosis. Expert Opin Pharmacother 8: 1103–1116PubMedCrossRefGoogle Scholar
  15. 15.
    Cho ML, Ju JH, Kim KW, Moon YM, Lee SY, Min SY, Cho YG, Kim HS, Park KS, Yoon CH et al (2007) Cyclosporine A inhibits IL-15-induced IL-17 production in CD4+ T cells via down-regulation of PI3K/Akt and NF-kappaB. Immunol Lett 108: 88–96PubMedCrossRefGoogle Scholar
  16. 16.
    Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, Blumenschein W, Churakovsa T, Low J, Presta L et al (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116: 1317–1326PubMedCrossRefGoogle Scholar
  17. 17.
    Fitzgerald DC, Ciric B, Touil T, Harle H, Grammatikopolou J, Das Sarma J, Gran B, Zhang GX, Rostami A (2007) Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J Immunol 179: 3268–3275PubMedGoogle Scholar
  18. 18.
    Kleinschek MA, Owyang AM, Joyce-Shaikh B, Langrish CL, Chen Y, Gorman DM, Blumenschein WM, McClanahan T, Brombacher F, Hurst SD et al (2007) IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 204: 161–170PubMedCrossRefGoogle Scholar
  19. 19.
    Bailey SL, Schreiner B, McMahon EJ, Miller SD (2007) CNS myeloid DCs presenting endogenous myelin peptides’ preferentially’ polarize CD4(+) T(H)-17 cells in relapsing EAE. Nat Immunol 8: 172–180PubMedCrossRefGoogle Scholar
  20. 20.
    Martin-Saavedra FM, Flores N, Dorado B, Eguiluz C, Bravo B, Garcia-Merino A, Ballester S (2007) Beta-interferon unbalances the peripheral T cell proinflammatory response in experimental autoimmune encephalomyelitis. Mol Immunol 44: 3597–3607PubMedCrossRefGoogle Scholar
  21. 21.
    Hofstetter HH, Ibrahim SM, Koczan D, Kruse N, Weishaupt A, Toyka KV, Gold R (2005) Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol 237: 123–130PubMedCrossRefGoogle Scholar
  22. 22.
    Uyttenhove C, Van Snick J (2006) Development of an anti-IL-17A auto-vaccine that prevents experimental autoimmune encephalomyelitis. Eur J Immunol 36: 2868–2874PubMedCrossRefGoogle Scholar
  23. 23.
    Rohn TA, Jennings GT, Hernandez M, Grest P, Beck M, Zou Y, Kopf M, Bachmann MF (2006) Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis. Eur J Immunol 36: 2857–2867PubMedCrossRefGoogle Scholar
  24. 24.
    Brown BA, Kantesaria PP, McDevitt LM (2007) Fingolimod: A novel immunosuppressant for multiple sclerosis. Ann Pharmacother 41: 1660–1668PubMedCrossRefGoogle Scholar
  25. 25.
    Liao JJ, Huang MC, Goetzl EJ (2007) Cutting edge: Alternative signaling of Th17 cell development by sphingosine 1-phosphate. J Immunol 178: 5425–5428PubMedGoogle Scholar
  26. 26.
    Weber MS, Stuve O, Neuhaus O, Hartung HP, Zamvil SS (2007) Spotlight on statins. Int MS J 14: 93–97PubMedGoogle Scholar
  27. 27.
    Sun X, Minohara M, Kikuchi H, Ishizu T, Tanaka M, Piao H, Osoegawa M, Ohyagi Y, Shimokawa H, Kira J (2006) The selective Rho-kinase inhibitor Fasudil is protective and therapeutic in experimental autoimmune encephalomyelitis. J Neuroimmunol 180: 126–134CrossRefGoogle Scholar
  28. 28.
    Ruggieri M, Avolio C, Livrea P, Trojano M (2007) Glatiramer acetate in multiple sclerosis: a review. CNS Drug Rev 13: 178–191PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Aaron J. Martin
    • 1
  • Stephen D. Miller
    • 1
  1. 1.Department of Microbiology & ImmunologyNorthwestern University, Feinberg School of MedicineChicagoUSA

Personalised recommendations