IL-23 orchestrates the switch from tumor immune surveillance to tumor-promoting inflammation

  • Martin Oft
Part of the Progress in Inflammation Research book series (PIR)


Human tumor cells acquire and accumulate mutations and transcriptional changes that provide growth and survival signals and a tumor-promoting microenvironment. Over the last few decades it has become clear that the mammalian immune system is able to recognize these genetic and epigenetic changes, and that T cells specific to oncogenes and oncofetal antigens are present in human cancer patients and their tumors. Immune-mediated inflammation, however, increases tumor incidence and progression. Epidemiologically, inflammatory disease-inducing cytokines have also been linked to tumor progression. However, the nature of the pro-inflammatory T cells that control the chronic inflammatory response, and their regulation by cytokines like IL-23, only became known recently. This review attempts to summarize our knowledge of pro-inflammatory T cells in cancer, and the cytokines that contribute to the deregulation of tumor-promoting inflammation and its inhibitory consequences on the tumor cell elimination by cytotoxic T cells.


Immune Surveillance Cytokine Milieu Oncofetal Antigen Human Cancer Patient Mammalian Immune System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of Cancer Immunosurveillance and immunoediting. Immunity 21: 137–148PubMedCrossRefGoogle Scholar
  2. 2.
    Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a metaanalysis. Lancet 370: 59–67PubMedCrossRefGoogle Scholar
  3. 3.
    Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211–217PubMedCrossRefGoogle Scholar
  4. 4.
    van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254: 1643–1647PubMedCrossRefGoogle Scholar
  5. 5.
    Knuth A, Danowski B, Oettgen HF, Old LJ (1984) T-cell-mediated cytotoxicity against autologous malignant melanoma: Analysis with interleukin 2-dependent T-cell cultures. Proc Natl Acad Sci USA 81: 3511–3515PubMedCrossRefGoogle Scholar
  6. 6.
    Van Der Bruggen P, Zhang Y, Chaux P, Stroobant V, Panichelli C, Schultz ES, Chapiro J, Van Den Eynde BJ, Brasseur F, Boon T (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 188: 51–64CrossRefGoogle Scholar
  7. 7.
    Jager E, Jager D, Knuth A (2003) Antigen-specific immunotherapy and cancer vaccines. Int J Cancer 106: 817–820PubMedCrossRefGoogle Scholar
  8. 8.
    Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–274PubMedCrossRefGoogle Scholar
  9. 9.
    Segal NH, Parsons DW, Peggs KS, Velculescu V, Kinzler KW, Vogelstein B, Allison JP (2008) Epitope landscape in breast and colorectal cancer. Cancer Res 68: 889–892PubMedCrossRefGoogle Scholar
  10. 10.
    Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within Cancer Cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58: 3491–3494PubMedGoogle Scholar
  11. 11.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313: 1960–1964PubMedCrossRefGoogle Scholar
  12. 12.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850–854PubMedCrossRefGoogle Scholar
  13. 13.
    Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL, Royal RE, Kammula U, Restifo NP, Hughes MS et al (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 175: 6169–6176PubMedGoogle Scholar
  14. 14.
    Blankenstein T (2005) The role of tumor stroma in the interaction between tumor and immune system. Curr Opin Immunol 17: 180–186PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, Yu P, Fu YX, Weichselbaum RR, Rowley DA et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204: 49–55PubMedCrossRefGoogle Scholar
  16. 16.
    Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12: 3–13PubMedCrossRefGoogle Scholar
  17. 17.
    Kastelein RA, Hunter CA, Cua DJ (2007) Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 25: 221–242PubMedCrossRefGoogle Scholar
  18. 18.
    Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F et al (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168: 5699–5708PubMedGoogle Scholar
  19. 19.
    Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3: 133–146PubMedCrossRefGoogle Scholar
  20. 20.
    Trinchieri G, Pflanz S, Kastelein RA (2003) The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19: 641–644PubMedCrossRefGoogle Scholar
  21. 21.
    Bowman EP, Chackerian AA, Cua DJ (2006) Rationale and safety of anti-interleukin-23 and anti-interleukin-17A therapy. Curr Opin Infect Dis 19: 245–252PubMedCrossRefGoogle Scholar
  22. 22.
    Happel KI, Zheng M, Young E, Quinton LJ, Lockhart E, Ramsay AJ, Shellito JE, Schurr JR, Bagby GJ, Nelson S et al (2003) Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol 170: 4432–4436PubMedGoogle Scholar
  23. 23.
    Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441: 231–234PubMedCrossRefGoogle Scholar
  24. 24.
    Novelli F, Casanova JL (2004) The role of IL-12, IL-23 and IFN-gamma in immunity to viruses. Cytokine Growth Factor Rev 15: 367–377PubMedCrossRefGoogle Scholar
  25. 25.
    McKenzie BS, Kastelein RA, Cua DJ (2006) Understanding the IL-23-IL-17 immune pathway. Trends Immunol 27: 17–23PubMedCrossRefGoogle Scholar
  26. 26.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201: 233–240PubMedCrossRefGoogle Scholar
  27. 27.
    Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189PubMedCrossRefGoogle Scholar
  28. 28.
    McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8: 1390–1397PubMedCrossRefGoogle Scholar
  29. 29.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238PubMedCrossRefGoogle Scholar
  30. 30.
    Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21: 467–476PubMedCrossRefGoogle Scholar
  31. 31.
    Fossiez F, Banchereau J, Murray R, Van Kooten C, Garrone P, Lebecque S (1998) Interleukin-17. Int Rev Immunol 16: 541–551PubMedCrossRefGoogle Scholar
  32. 32.
    Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W et al (2006) IL-23 is essential for T cellmediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116: 1310–1316PubMedCrossRefGoogle Scholar
  33. 33.
    Lockhart E, Green AM, Flynn JL (2006) IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177: 4662–4669PubMedGoogle Scholar
  34. 34.
    He D, Wu L, Kim HK, Li H, Elmets CA, Xu H (2006) CD8+ IL-17-Producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. J Immunol 177: 6852–6858PubMedGoogle Scholar
  35. 35.
    Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, McClanahan T, Kastelein RA, Oft M (2006) IL-23 promotes tumour incidence and growth. Nature 442: 461–465PubMedCrossRefGoogle Scholar
  36. 36.
    Wong GH, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW (1984) Inducible expression of H-2 and Ia antigens on brain cells. Nature 310: 688–691PubMedCrossRefGoogle Scholar
  37. 37.
    Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95: 7556–7561PubMedCrossRefGoogle Scholar
  38. 38.
    Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, Ritz J, Sandler AB, Edington HD, Garzone PD et al (1997) Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 3: 409–417PubMedGoogle Scholar
  39. 39.
    Cebon J, Jager E, Shackleton MJ, Gibbs P, Davis ID, Hopkins W, Gibbs S, Chen Q, Karbach J, Jackson H et al (2003) Two phase I studies of low dose recombinant human IL-12 with Melan-A and influenza peptides in subjects with advanced malignant melanoma. Cancer Immun 3: 7PubMedGoogle Scholar
  40. 40.
    Lo CH, Lee SC, Wu PY, Pan WY, Su J, Cheng CW, Roffler SR, Chiang BL, Lee CN, Wu CW et al (2003) Antitumor and antimetastatic activity of IL-23. J Immunol 171: 600–607PubMedGoogle Scholar
  41. 41.
    Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, Paulos CM, Palmer DC, Touloukian CE, Ptak K et al (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112: 362–373PubMedCrossRefGoogle Scholar
  42. 42.
    Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R, Robinson N, Buonocore S, Tlaskalova-Hogenova H, Cua DJ et al (2006) Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25: 309–318PubMedCrossRefGoogle Scholar
  43. 43.
    Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze MT (2003) Interleukin-17 promotes angiogenesis and tumor growth. Blood 101: 2620–2627PubMedCrossRefGoogle Scholar
  44. 44.
    Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J, Chang A, Zou W (2007) Cut ting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178: 6730–6733PubMedGoogle Scholar
  45. 45.
    Liu SJ, Tsai JP, Shen CR, Sher YP, Hsieh CL, Yeh YC, Chou AH, Chang SR, Hsiao KN, Yu FW et al (2007) Induction of a distinct CD8 Tnc17 subset by transforming growth factor-beta and interleukin-6. J Leukoc Biol 82: 354–360PubMedCrossRefGoogle Scholar
  46. 46.
    Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, Lucian L, Geissler R, Brodie S, Kimball AB et al (2006) IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 203: 2577–2587PubMedCrossRefGoogle Scholar
  47. 47.
    Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445: 648–651PubMedCrossRefGoogle Scholar
  48. 48.
    Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203: 2271–2279PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Martin Oft
    • 1
  1. 1.Schering-Plough Biopharma (formerly DNAX)Palo AltoUSA

Personalised recommendations