Skip to main content

IL-23 orchestrates the switch from tumor immune surveillance to tumor-promoting inflammation

  • Chapter
Th 17 Cells: Role in Inflammation and Autoimmune Disease

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Human tumor cells acquire and accumulate mutations and transcriptional changes that provide growth and survival signals and a tumor-promoting microenvironment. Over the last few decades it has become clear that the mammalian immune system is able to recognize these genetic and epigenetic changes, and that T cells specific to oncogenes and oncofetal antigens are present in human cancer patients and their tumors. Immune-mediated inflammation, however, increases tumor incidence and progression. Epidemiologically, inflammatory disease-inducing cytokines have also been linked to tumor progression. However, the nature of the pro-inflammatory T cells that control the chronic inflammatory response, and their regulation by cytokines like IL-23, only became known recently. This review attempts to summarize our knowledge of pro-inflammatory T cells in cancer, and the cytokines that contribute to the deregulation of tumor-promoting inflammation and its inhibitory consequences on the tumor cell elimination by cytotoxic T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of Cancer Immunosurveillance and immunoediting. Immunity 21: 137–148

    Article  PubMed  CAS  Google Scholar 

  2. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a metaanalysis. Lancet 370: 59–67

    Article  PubMed  Google Scholar 

  3. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211–217

    Article  PubMed  CAS  Google Scholar 

  4. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254: 1643–1647

    Article  PubMed  Google Scholar 

  5. Knuth A, Danowski B, Oettgen HF, Old LJ (1984) T-cell-mediated cytotoxicity against autologous malignant melanoma: Analysis with interleukin 2-dependent T-cell cultures. Proc Natl Acad Sci USA 81: 3511–3515

    Article  PubMed  CAS  Google Scholar 

  6. Van Der Bruggen P, Zhang Y, Chaux P, Stroobant V, Panichelli C, Schultz ES, Chapiro J, Van Den Eynde BJ, Brasseur F, Boon T (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 188: 51–64

    Article  Google Scholar 

  7. Jager E, Jager D, Knuth A (2003) Antigen-specific immunotherapy and cancer vaccines. Int J Cancer 106: 817–820

    Article  PubMed  CAS  Google Scholar 

  8. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–274

    Article  PubMed  CAS  Google Scholar 

  9. Segal NH, Parsons DW, Peggs KS, Velculescu V, Kinzler KW, Vogelstein B, Allison JP (2008) Epitope landscape in breast and colorectal cancer. Cancer Res 68: 889–892

    Article  PubMed  CAS  Google Scholar 

  10. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within Cancer Cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58: 3491–3494

    PubMed  CAS  Google Scholar 

  11. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313: 1960–1964

    Article  PubMed  CAS  Google Scholar 

  12. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850–854

    Article  PubMed  CAS  Google Scholar 

  13. Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL, Royal RE, Kammula U, Restifo NP, Hughes MS et al (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 175: 6169–6176

    PubMed  CAS  Google Scholar 

  14. Blankenstein T (2005) The role of tumor stroma in the interaction between tumor and immune system. Curr Opin Immunol 17: 180–186

    Article  PubMed  CAS  Google Scholar 

  15. Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, Yu P, Fu YX, Weichselbaum RR, Rowley DA et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204: 49–55

    Article  PubMed  CAS  Google Scholar 

  16. Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12: 3–13

    Article  PubMed  CAS  Google Scholar 

  17. Kastelein RA, Hunter CA, Cua DJ (2007) Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 25: 221–242

    Article  PubMed  CAS  Google Scholar 

  18. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F et al (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168: 5699–5708

    PubMed  CAS  Google Scholar 

  19. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3: 133–146

    Article  PubMed  CAS  Google Scholar 

  20. Trinchieri G, Pflanz S, Kastelein RA (2003) The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19: 641–644

    Article  PubMed  CAS  Google Scholar 

  21. Bowman EP, Chackerian AA, Cua DJ (2006) Rationale and safety of anti-interleukin-23 and anti-interleukin-17A therapy. Curr Opin Infect Dis 19: 245–252

    Article  PubMed  CAS  Google Scholar 

  22. Happel KI, Zheng M, Young E, Quinton LJ, Lockhart E, Ramsay AJ, Shellito JE, Schurr JR, Bagby GJ, Nelson S et al (2003) Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol 170: 4432–4436

    PubMed  CAS  Google Scholar 

  23. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441: 231–234

    Article  PubMed  CAS  Google Scholar 

  24. Novelli F, Casanova JL (2004) The role of IL-12, IL-23 and IFN-gamma in immunity to viruses. Cytokine Growth Factor Rev 15: 367–377

    Article  PubMed  CAS  Google Scholar 

  25. McKenzie BS, Kastelein RA, Cua DJ (2006) Understanding the IL-23-IL-17 immune pathway. Trends Immunol 27: 17–23

    Article  PubMed  CAS  Google Scholar 

  26. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201: 233–240

    Article  PubMed  CAS  Google Scholar 

  27. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189

    Article  PubMed  CAS  Google Scholar 

  28. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8: 1390–1397

    Article  PubMed  CAS  Google Scholar 

  29. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238

    Article  PubMed  CAS  Google Scholar 

  30. Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21: 467–476

    Article  PubMed  CAS  Google Scholar 

  31. Fossiez F, Banchereau J, Murray R, Van Kooten C, Garrone P, Lebecque S (1998) Interleukin-17. Int Rev Immunol 16: 541–551

    Article  PubMed  CAS  Google Scholar 

  32. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W et al (2006) IL-23 is essential for T cellmediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116: 1310–1316

    Article  PubMed  CAS  Google Scholar 

  33. Lockhart E, Green AM, Flynn JL (2006) IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177: 4662–4669

    PubMed  CAS  Google Scholar 

  34. He D, Wu L, Kim HK, Li H, Elmets CA, Xu H (2006) CD8+ IL-17-Producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. J Immunol 177: 6852–6858

    PubMed  CAS  Google Scholar 

  35. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, McClanahan T, Kastelein RA, Oft M (2006) IL-23 promotes tumour incidence and growth. Nature 442: 461–465

    Article  PubMed  CAS  Google Scholar 

  36. Wong GH, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW (1984) Inducible expression of H-2 and Ia antigens on brain cells. Nature 310: 688–691

    Article  PubMed  CAS  Google Scholar 

  37. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95: 7556–7561

    Article  PubMed  CAS  Google Scholar 

  38. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, Ritz J, Sandler AB, Edington HD, Garzone PD et al (1997) Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 3: 409–417

    PubMed  CAS  Google Scholar 

  39. Cebon J, Jager E, Shackleton MJ, Gibbs P, Davis ID, Hopkins W, Gibbs S, Chen Q, Karbach J, Jackson H et al (2003) Two phase I studies of low dose recombinant human IL-12 with Melan-A and influenza peptides in subjects with advanced malignant melanoma. Cancer Immun 3: 7

    PubMed  Google Scholar 

  40. Lo CH, Lee SC, Wu PY, Pan WY, Su J, Cheng CW, Roffler SR, Chiang BL, Lee CN, Wu CW et al (2003) Antitumor and antimetastatic activity of IL-23. J Immunol 171: 600–607

    PubMed  CAS  Google Scholar 

  41. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, Paulos CM, Palmer DC, Touloukian CE, Ptak K et al (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112: 362–373

    Article  PubMed  CAS  Google Scholar 

  42. Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R, Robinson N, Buonocore S, Tlaskalova-Hogenova H, Cua DJ et al (2006) Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25: 309–318

    Article  PubMed  CAS  Google Scholar 

  43. Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze MT (2003) Interleukin-17 promotes angiogenesis and tumor growth. Blood 101: 2620–2627

    Article  PubMed  CAS  Google Scholar 

  44. Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J, Chang A, Zou W (2007) Cut ting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178: 6730–6733

    PubMed  CAS  Google Scholar 

  45. Liu SJ, Tsai JP, Shen CR, Sher YP, Hsieh CL, Yeh YC, Chou AH, Chang SR, Hsiao KN, Yu FW et al (2007) Induction of a distinct CD8 Tnc17 subset by transforming growth factor-beta and interleukin-6. J Leukoc Biol 82: 354–360

    Article  PubMed  CAS  Google Scholar 

  46. Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, Lucian L, Geissler R, Brodie S, Kimball AB et al (2006) IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 203: 2577–2587

    Article  PubMed  CAS  Google Scholar 

  47. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445: 648–651

    Article  PubMed  CAS  Google Scholar 

  48. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203: 2271–2279

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Oft, M. (2009). IL-23 orchestrates the switch from tumor immune surveillance to tumor-promoting inflammation. In: Quesniaux, V., Ryffel, B., Di Padova, F. (eds) Th 17 Cells: Role in Inflammation and Autoimmune Disease. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8681-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-8681-8_14

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-8680-1

  • Online ISBN: 978-3-7643-8681-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics