IL-17 and mucosal host defense

  • Shabaana A. Khader
  • Jay K. Kolls
Part of the Progress in Inflammation Research book series (PIR)


IL-17, a cytokine initially cloned from memory CD+ T cells is produced by Th17 cells, a new lineage of T cells that are controlled by the transcription factor RORγt, as well as γ δ T cells and NK T cells. IL-17A and IL-17F use both IL-17RA and IL-17RC for signaling. IL-17RA is widely expressed in myeloid cells, fibroblasts, and epithelium. IL-17RA signaling is critical for mucosal immunity in the lung against extracellular bacterial infection through the regulation of granulopoietic growth factors and CXC chemokines required for neutrophil recruitment, as well as anti-microbial protein expression in epithelium. IL-17RA has a limited role in controlling the primary response to intracellular pathogens such as Listeria monocytogenes or Mycobacterium tuberculosis, which require Th1 immunity. However, in the setting of vaccine-induced immunity, IL-17 regulates the recruitment of Th1 cells and is required for optimal vaccine responses for both extracellular and intracellular pathogens.


Human Bronchial Epithelial Cell Mycobacterium Tuberculosis Infection Whole Cell Pertussis Herpesvirus Saimiri Neutrophil Emigration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck JM, Rosen MJ, Peavy HH (2001) Pulmonary complications of HIV infection. Report of the Fourth NHLBI Workshop. Am J Respir Crit Care Med 164: 2120–2126PubMedGoogle Scholar
  2. 2.
    Gallant JE, Moore RD, Chaisson RE (1994) Prophylaxis for opportunistic infections in patients with HIV infection. Ann Intern Med 120: 932–944PubMedGoogle Scholar
  3. 3.
    Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM (1995) The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84: 423–432PubMedGoogle Scholar
  4. 4.
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178: 2249–2254PubMedCrossRefGoogle Scholar
  5. 5.
    Suzuki Y, Conley FK, Remington JS (1989) Importance of endogenous IFN-gamma for prevention of toxoplasmic encephalitis in mice. J Immunol 143: 2045–2050PubMedGoogle Scholar
  6. 6.
    Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A (1993) Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci USA 90: 6115–6119PubMedCrossRefGoogle Scholar
  7. 7.
    Finkelman FD, Shea-Donohue T, Goldhill J, Sullivan CA, Morris SC, Madden KB, Gause WC, Urban JF Jr (1997) Cytokine regulation of host defense against parasitic gastrointestinal nematodes: Lessons from studies with rodent models. Annu Rev Immunol 15: 505–533PubMedCrossRefGoogle Scholar
  8. 8.
    Wolff AJ, O’Donnell AE (2001) Pulmonary manifestations of HIV infection in the era of highly active antiretroviral therapy. Chest 120: 1888–1893PubMedCrossRefGoogle Scholar
  9. 9.
    Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 150: 5445–5456PubMedGoogle Scholar
  10. 10.
    Yao Z, Fanslow WC, Seldin MF, Rousseau A-M, Painter SL, Comeau MR, Cohen JI, Spriggs MK (1995) Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to novel cytokine receptor. Immunity 3: 811–821PubMedCrossRefGoogle Scholar
  11. 11.
    Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat CT, Pin JJ, Garrone P, Garcia E, Saeland S et al (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183: 2593–2603PubMedCrossRefGoogle Scholar
  12. 12.
    Schwarzenberger P, Huang W, Ye P, Oliver P, Manuel M, Zhang Z Bagby G, Nelson S, Kolls JK (2000) Requirement of endogenous stem cell factor and granulocyte-colonystimulating factor for IL-17-mediated granulopoiesis. J Immunol 164: 4783–4789PubMedGoogle Scholar
  13. 13.
    Tan W, Huang W, Zhong Q, Schwarzenberger P (2006) IL-17 receptor knockout mice have enhanced myelotoxicity and impaired hemopoietic recovery following gamma irradiation. J Immunol 176: 6186–6193PubMedGoogle Scholar
  14. 14.
    Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J et al (2001) Requirement of interleukin 17 receptor signaling for lung cxc chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194: 519–528PubMedCrossRefGoogle Scholar
  15. 15.
    Forlow SB, Schurr JR, Kolls JK, Bagby GJ, Schwarzenberger PO, Ley K (2001) Increased granulopoiesis through interleukin-17 and granulocyte colony-stimulating factor in leukocyte adhesion molecule-deficient mice. Blood 98: 3309–3314PubMedCrossRefGoogle Scholar
  16. 16.
    Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22: 285–294PubMedCrossRefGoogle Scholar
  17. 17.
    Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21: 467–476PubMedCrossRefGoogle Scholar
  18. 18.
    McAllister F, Henry A, Kreindler JL, Dubin PJ, Ulrich L, Steele C, Finder JD, Pilewski JM, Carreno BM, Goldman SJ et al (2005) Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-α and granulocyte colony-stimulating factor in bronchial epithelium: Implications for airway inflammation in cystic fibrosis. J Immunol 175: 404–412PubMedGoogle Scholar
  19. 19.
    Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, Kim HY et al (2004) IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NFkappaB-and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther 6: R120–R128PubMedCrossRefGoogle Scholar
  20. 20.
    Prause O, Laan M, Lötvall J, Lindén A (2003) Pharmacological modulation of interleukin-17-induced GCP-2-, GRO-alpha-and interleukin-8 release in human bronchial epithelial cells. Eur J Pharmacol 462: 193–198PubMedCrossRefGoogle Scholar
  21. 21.
    Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, Xiao J, Lu Y, Giltiay N, Liu J et al (2007) The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 8: 247–256PubMedCrossRefGoogle Scholar
  22. 22.
    Shen F, Ruddy MJ, Plamondon P, Gaffen SL (2005) Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17-and TNF-alpha-induced genes in bone cells. J Leukoc Biol 77: 388–399PubMedCrossRefGoogle Scholar
  23. 23.
    Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25: 821–852PubMedCrossRefGoogle Scholar
  24. 24.
    Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203: 2271–2279PubMedCrossRefGoogle Scholar
  25. 25.
    Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8: 950–957PubMedCrossRefGoogle Scholar
  26. 26.
    Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA, Reinhart TA, McAllister F, Edeal J, Gaus K et al (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14: 275–281PubMedCrossRefGoogle Scholar
  27. 27.
    Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, Odden AR, Shellito JE, Bagby GJ, Nelson S, Kolls JK (2005) Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 202: 761–769PubMedCrossRefGoogle Scholar
  28. 28.
    Khader SA, Pearl JE, Sakamoto K, Gilmartin L, Bell GK, Jelley-Gibbs DM, Ghilardi N, de Sauvage F, Cooper AM (2005) IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol 175: 788–795PubMedGoogle Scholar
  29. 29.
    Chung DR, Kasper DL, Panzo RJ, Chitnis T, Grusby MJ, Sayegh MH, Tzianabos AO (2003) CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol 170: 1958–1963PubMedGoogle Scholar
  30. 30.
    Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-ß induces development of the TH17 lineage. Nature 441: 231–234PubMedCrossRefGoogle Scholar
  31. 31.
    Huang W, Na L, Fidel PL, Schwarzenberger P (2004) Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 190: 624–631PubMedCrossRefGoogle Scholar
  32. 32.
    Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW (2007) IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect 9: 78–86PubMedCrossRefGoogle Scholar
  33. 33.
    Kao CY, Chen Y, Thai P, Wachi S, Huang F, Kim C, Harper RW, Wu R (2004) IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 173: 3482–3491PubMedGoogle Scholar
  34. 34.
    Infante-Duarte C, Horton HF, Byrne MC, Kamradt T (2000) Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 165: 6107–6115PubMedGoogle Scholar
  35. 35.
    Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB, Wong CH, Schneider E, Dy M, Leite-de-Moraes MC (2007) Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204: 995–1001PubMedCrossRefGoogle Scholar
  36. 36.
    Lockhart E, Green AM, Flynn JL (2006) IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177: 4662–4669PubMedGoogle Scholar
  37. 37.
    Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y (2007) Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol 178: 4466–4472PubMedGoogle Scholar
  38. 38.
    Aggarwal S, Ghilardi N, Xie MH, De Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278: 1910–1914PubMedCrossRefGoogle Scholar
  39. 39.
    Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL (2007) IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8: 369–377PubMedCrossRefGoogle Scholar
  40. 40.
    Romano M, D’Souza S, Adnet PY, Laali R, Jurion F, Palfliet K, Huygen K (2006) Priming but not boosting with plasmid DNA encoding mycolyl-transferase Ag85A from Mycobacterium tuberculosis increases the survival time of Mycobacterium bovis BCG vaccinated mice against low dose intravenous challenge with M. uberculosis H37Rv. Vaccine 24: 3353–3364CrossRefGoogle Scholar
  41. 41.
    Agger EM, Cassidy JP, Brady J, Korsholm KS, Vingsbo-Lundberg C, Andersen P (2008) Adjuvant modulation of the cytokine balance in Mycobacterium tuberculosis subunit vaccines; immunity, pathology and protection. Immunology 124: 175–185PubMedCrossRefGoogle Scholar
  42. 42.
    Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19: 93–129PubMedCrossRefGoogle Scholar
  43. 43.
    Scriba TJ, Kalsdorf B, Abrahams DA, Isaacs F, Hofmeister J, Black G, Hassan HY, Wilkinson RJ, Walzl G, Gelderbloem SJ (2008) Distinct, specific IL-17-and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. J Immunol 180: 1962–1970PubMedGoogle Scholar
  44. 44.
    Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, Mosteller F (1994) Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 271: 698–702PubMedCrossRefGoogle Scholar
  45. 45.
    Higgins SC, Jarnicki AG, Lavelle EC, Mills KH (2006) TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: Role of IL-17-producing T cells. J Immunol 177: 7980–7989PubMedGoogle Scholar
  46. 46.
    Malley R, Srivastava A, Lipsitch M, Thompson CM, Watkins C, Tzianabos A, Anderson PW (2006) Antibody-independent, interleukin-17A-mediated, cross-serotype immunity to pneumococci in mice immunized intranasally with the cell wall polysaccharide. Infect Immun 74: 2187–2195PubMedCrossRefGoogle Scholar
  47. 47.
    McNeal MM, Basu M, Bean JA, Clements JD, Choi AH, Ward RL (2007) Identification of an immunodominant CD4+ T cell epitope in the VP6 protein of rotavirus following intranasal immunization of BALB/c mice. Virology 363: 410–418PubMedCrossRefGoogle Scholar
  48. 48.
    McNeal MM, Basu M, Bean JA, Clements JD, Lycke NY, Ramne A, Löwenadler B, Choi AH, Ward RL (2007) Intrarectal immunization of mice with VP6 and either LT(R192G) or CTA1-DD as adjuvant protects against fecal rotavirus shedding after EDIM challenge. Vaccine 25: 6224–6231PubMedCrossRefGoogle Scholar
  49. 49.
    Smiley KL, McNeal MM, Basu M, Choi AH, Clements JD, Ward RL (2007) Association of gamma interferon and interleukin-17 production in intestinal CD4+ T cells with protection against rotavirus shedding in mice intranasally immunized with VP6 and the adjuvant LT(R192G). J Virol 81: 3740–3748PubMedCrossRefGoogle Scholar
  50. 50.
    McNeal MM, Stone SC, Basu M, Clements JD, Choi AH, Ward RL (2007) IFN-gamma is the only anti-rotavirus cytokine found after in vitro stimulation of memory CD4(+) T cells from mice immunized with a chimeric VP6 protein. Viral Immunol 20: 571–584PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Shabaana A. Khader
    • 1
  • Jay K. Kolls
    • 1
  1. 1.Division of Pulmonology, Department of PediatricsChildren’s Hospital of Pittsburgh and the University of PittsburghPittsburghUSA

Personalised recommendations