PEG and PEG conjugates toxicity: towards an understanding of the toxicity of PEG and its relevance to PEGylated biologicals

  • Rob Webster
  • Victoria Elliott
  • B. Kevin Park
  • Donald Walker
  • Mark Hankin
  • Philip Taupin
Part of the Milestones in Drug Therapy book series (MDT)


PEG is used to improve pharmacokinetic properties of biologicals. Concern has been expressed about the toxicological effect and/or fate of the PEG. This paper reviews the available toxicity, metabolism and clearance data of PEG and PEGylated products in order to place such concerns in to appropriate context. The available data demonstrates that PEG itself only shows toxicity at high, parenteral doses and the usual target organ is the kidney as this is the route of excretion for unchanged PEG. A large therapeutic window (approximately 600-fold) exists between the maximum PEG burden from a current biological agent and the doses of PEG associated with human toxicity. Pathological changes which results in no functional deficit, PEG containing vacuoles in cells, have been observed with PEGylated biologicals. There is evidence that these PEG vesicle can resolve with time. In conclusion the doses used clinically for current and many future PEGylated biologicals are low and will result in exposures to PEG significantly lower than that required to elicit PEG toxicity. In all cases the routine regulatory toxicology studies would identify relevant pathology should it occur.


Polyethylene Glycol Glycolic Acid PEGylated Protein Kidney Tubular Cell High Molecular Weight PEGs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Webster R, Didier E, Harris P, Siegel N, Stadler J, Tilbury L, Smith D (2007) PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos 35:9–16CrossRefPubMedGoogle Scholar
  2. 2.
    Mehvar R (2000) Modulation of the pharmacokinetics and pharmacodynamics of proteins by polyethylene glycol conjugation. J Pharm Sci 3:125–136Google Scholar
  3. 3.
    Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458CrossRefPubMedGoogle Scholar
  4. 4.
    Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476CrossRefPubMedGoogle Scholar
  5. 5.
    Morpurgo M, Veronese FM (2004) Conjugates of peptides and proteins to polyethylene glycols. Methods Mol Biol 283:45–70PubMedGoogle Scholar
  6. 6.
    Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60:13–28CrossRefPubMedGoogle Scholar
  7. 7.
    Veronese FM, Harris JM (2008) Peptide and protein PEGylation III: advances in chemistry and clinical applications. Adv Drug Deliv Rev 60:1–2CrossRefGoogle Scholar
  8. 8.
    Veronese FM, Harris JM (2002) Introduction and overview of peptide and protein pegylation. Adv Drug Deliv Rev 54:453–456CrossRefPubMedGoogle Scholar
  9. 9.
    Fruijtier-Polloth C (2005) Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology 214:1–38CrossRefPubMedGoogle Scholar
  10. 10.
    Alden CL, Frith CH (1991) Urinary system. In: Haschek WM, Rousseaux CG (eds): Handbook of Toxicology Pathology. Acedemic Press, New York, 339–341Google Scholar
  11. 11.
    PegIntron EPAR. Available at: (Accessed 07 April 2008)Google Scholar
  12. 12.
    Polyethylene glycols (Who Food Additives Series 14). Available at: (Accessed 07 April 2008)Google Scholar
  13. 13.
    Descamps C, Cabrera G, Depierreux M, Deviere J (2000) Acute renal insufficiency after colon cleansing. Endoscopy 32:S11Google Scholar
  14. 14.
    Erickson TB, Aks SE, Zabaneh R, Reid R (1996) Acute renal toxicity after ingestion of Lava light liquid. Ann Emerg Med 27:781–784CrossRefPubMedGoogle Scholar
  15. 15.
    Bruns DE, Herold DA, Rodeheaver GT, Edlich RF (1982) Polyethylene glycol intoxication in burn patients. Burns Incl Therm Inj 9:49–52PubMedGoogle Scholar
  16. 16.
    Herold DA, Rodeheaver GT, Bellamy WT, Fitton LA, Bruns DE, Edlich RF (1982) Toxicity of topical polyethylene glycol. Toxicol Appl Pharmacol 65:329–335CrossRefPubMedGoogle Scholar
  17. 17.
    McCabe W, Jackson G, Hans G (1959) Treatment of chronic pyelonephritis. Arch Intern Med 104:710–719Google Scholar
  18. 18.
    Laine GA, Hossain SM, Solis RT, Adams SC (1995) Polyethylene glycol nephrotoxicity secondary to prolonged high-dose intravenous lorazepam. Ann Pharmacother 29:1110–1114PubMedGoogle Scholar
  19. 19.
    Herold DA, Keil K, Bruns DE (1989) Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem Pharmacol 38:73–76CrossRefPubMedGoogle Scholar
  20. 20.
    Schaffer C, Critchfield F, Nair J (1950) The absorption and excretion of a liquid polyethylene glycol. J Am Pharm Assoc Sci Ed 39:340–344Google Scholar
  21. 21.
    Cruzan G, Corley RA, Hard GC, Mertens JJ, McMartin KE, Snellings WM, Gingell R, Deyo JA (2004) Subchronic toxicity of ethylene glycol in Wistar and F-344 rats related to metabolism and clearance of metabolites. Toxicol Sci 81:502–511CrossRefPubMedGoogle Scholar
  22. 22.
    Guo C, McMartin KE (2005) The cytotoxicity of oxalate, metabolite of ethylene glycol, is due to calcium oxalate monohydrate formation. Toxicology 208:347–355CrossRefPubMedGoogle Scholar
  23. 23.
    Na DH, Lee KC (2004) Capillary electrophoretic characterization of PEGylated human parathyroid hormone with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 331:322–328CrossRefPubMedGoogle Scholar
  24. 24.
    Dou H, Zhang M, Zhang Y, Yin C (2007) Synthesis and purification of mono-PEGylated insulin. Chem Biol Drug Des 69:132–138CrossRefPubMedGoogle Scholar
  25. 25.
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yohida T (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time of flight mass spectrometry. Rapid Communications in Mass Spectroscopy 2:151–153CrossRefGoogle Scholar
  26. 26.
    Weaver R, Riley RJ (2006) Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400. Rapid Commun Mass Spectrom 20:2559–2564CrossRefPubMedGoogle Scholar
  27. 27.
    Hunt DF, Giordani AB, Rhodes G, Herold DA (1982) Mixture analysis by triple-quadrupole mass spectrometry: metabolic profiling of urinary carboxylic acids. Clin Chem 28:2387–2392PubMedGoogle Scholar
  28. 28.
    Keevil BG, Thornton S (2006) Quantification of urinary oxalate by liquid chromatography-tandem mass spectrometry with online weak anion exchange chromatography. Clin Chem 52:2296–2299CrossRefPubMedGoogle Scholar
  29. 29.
    Tsai NM, Cheng TL, Roffler SR (2001) Sensitive measurement of polyethylene glycol-modified proteins. Biotechniques 30:396–402PubMedGoogle Scholar
  30. 30.
    Wunderlich DA, Macdougall M, Mierz DV, Toth JG, Buckholz TM, Lumb KJ, Vasavada H (2007) Generation and characterization of a monoclonal IgG antibody to polyethylene glycol. Hybridoma (Larchmt) 26:168–172CrossRefGoogle Scholar
  31. 31.
    Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 54:531–545CrossRefPubMedGoogle Scholar
  32. 32.
    Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung WJ, Porter JE, Ehrlich GK, Pan W, Xu ZX, Modi MW, Farid A, Berthold W, Graves M (2001) Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug Chem 12:195–202CrossRefPubMedGoogle Scholar
  33. 33.
    Kellner K, Tessmar J, Milz S, Angele P, Nerlich M, Schulz MB, Blunk T, Gopferich A (2004) PEGylation does not impair insulin efficacy in three-dimensional cartilage culture: an investigation toward biomimetic polymers. Tissue Eng 10:429–440CrossRefPubMedGoogle Scholar
  34. 34.
    Pegasys EPAR. Available at: (Accessed 07 April 2008)Google Scholar
  35. 35.
    Neulasta EPAR. Available at: (Accessed 07 April 2008)Google Scholar
  36. 36.
    Somavert EPAR. Available at: (Accessed 07 April 2008)Google Scholar
  37. 37.
    Macugen EPAR. Available from at: (Accessed 07 April 2008)Google Scholar
  38. 38.
    Bendele A, Seely J, Richey C, Sennello G, Shopp G (1998) Short communication: renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol Sci 42:152–157CrossRefPubMedGoogle Scholar
  39. 39.
    Young MA, Malavalli A, Winslow N, Vandegriff KD, Winslow RM (2007) Toxicity and hemodynamic effects after single dose administration of MalPEG-hemoglobin (MP4) in rhesus monkeys. Transi Res 149:333–342CrossRefGoogle Scholar
  40. 40.
    Schaer DJ, Schaer CA, Buehler PW, Boykins RA, Schoedon G, Alayash AI, Schaffner A (2006) CD 163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 107:373–380CrossRefPubMedGoogle Scholar
  41. 41.
    Shum KL, Leon A, Viau AT, Pilon D, Nucci M, Shorr RG (1996) The physiological and histopathological response of dogs to exchange transfusion with polyethylene glycol-modified bovine hemoglobin (PEG-Hb). Artif Cells Blood Substit Immobil Biotechnol 24:655–683CrossRefPubMedGoogle Scholar
  42. 42.
    Conover C, Lejeune L, Linberg R, Shum K, Shorr RG (1996) Transitional vacuole formation following a bolus infusion of PEG-hemoglobin in the rat. Artif Cells Blood Substit Immobil Biotechnol 24:599–611CrossRefPubMedGoogle Scholar
  43. 43.
    Viau AT, Abuchowski A, Greenspan S, Davis FF (1986) Safety evaluation of free radical scavengers PEG-catalase and PEG-superoxide dismutase. J Free Radie Biol Med 2:283–288CrossRefGoogle Scholar
  44. 44.
    Modi MW, Fulton JS, Buckmann DK (2000) Clearance of PEGylated (40KDa) interferone alfa-2a (PEGASYS) is primarily hepatic. Hepatology 32:371AGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Rob Webster
    • 1
  • Victoria Elliott
    • 2
  • B. Kevin Park
    • 2
  • Donald Walker
    • 1
  • Mark Hankin
    • 3
  • Philip Taupin
    • 3
  1. 1.Pharmacokinetics, Dynamics and MetabolismPfizer Global Research and DevelopmentKentUK
  2. 2.MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
  3. 3.DSRDPfizer Global Research and DevelopmentKentUK

Personalised recommendations