The site-specific TGase-mediated PEGylation of proteins occurs at flexible sites

  • Angelo Fontana
  • Barbara Spolaore
  • Anna Mero
  • Francesco M. Veronese
Part of the Milestones in Drug Therapy book series (MDT)


Transglutaminase (TGase) is able to catalyse the acyl transfer reaction between the γ-carboxamide group of a protein-bound glutamine (Gln) residue and an amino-derivative of poly(ethylene glycol) (PEG-NH2), thus leading to a PEGylated protein. Several proteins of therapeutic interest have been PEGylated by means of TGase, among them interleukin-2, granulocyte colony-stimulating factor, human growth hormone and erythropoietin. Surprisingly, PEGylation occurred at specific Gln residue(s), despite the fact that these proteins contained several Gln residues. An analysis of the TGase-mediated reactions in terms of structure and dynamics of protein substrates revealed a correlation between sites of TGase attack and chain regions of enhanced backbone flexibility, as detected by the crystallographic profile of the B-factor along the protein polypeptide chain. Moreover, the TGasemediated reactions often occurred at chain regions characterized by missing electron density, indicating that these regions are disordered. In particular, it was noted that in a number of cases the sites of TGase attack occurred at the same chain regions prone to limited proteolysis phenomena. Since chain flexibility or local unfolding was earlier found to dictate the sites of limited proteolysis of proteins, it is concluded that both TGase and a protease require an unfolded polypeptide substrate in an extended conformation for the site-specific enzymatic attack.


Human Growth Hormone Globular Protein Limited Proteolysis Chain Region Nature Struct Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: A summary and pharmacological classification. Nature Rev Drug Discov 7: 21–39CrossRefGoogle Scholar
  2. 2.
    Frokjaer S, Otzen DE (2005) Protein drug stability: A formulation challenge. Nature Rev Drug Discov 4: 298–306CrossRefGoogle Scholar
  3. 3.
    Pavlou A, Reichert J (2004) Recombinant protein therapeutics: Success rates, market trends and values to 2010. Nature Biotechnol 22: 1513–1519CrossRefGoogle Scholar
  4. 4.
    Harris JM, Chess R (2003) Effect of PEGylation on pharmaceuticals. Nature Rev Drug Discov 2: 214–221CrossRefGoogle Scholar
  5. 5.
    Davis F (2002) The origin of PEGnology. Adv Drug Deliv Rev 54: 457–458PubMedCrossRefGoogle Scholar
  6. 6.
    Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of poly(ethylene glycol) on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252: 3582–3586PubMedGoogle Scholar
  7. 7.
    Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252: 3578–3581PubMedGoogle Scholar
  8. 8.
    Harris JM (ed.) (1991) Poly(ethylene glycol) chemistry: Biotechnological and biomedical applications. Plenum Press, New YorkGoogle Scholar
  9. 9.
    Pasut G, Guiotto A, Veronese FM (2004) Protein, peptide and non-peptide drug PEGylation for therapeutic applications. Expert Opin Ther Pat 14: 1–36CrossRefGoogle Scholar
  10. 10.
    Malik DK, Baboota S, Ahuja A, Hasan S, Ali J (2007) Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv 4: 141–151PubMedCrossRefGoogle Scholar
  11. 11.
    Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discovery Today 10: 1451–1458PubMedCrossRefGoogle Scholar
  12. 12.
    Harris JM, Veronese FM (eds): (2002) Peptide and protein PEGylation. Adv Drug Deliv Rev 54: 453–610Google Scholar
  13. 13.
    Harris JM, Veronese FM (eds): (2003) Peptide and protein PEGylation II: Clinical evaluation. Adv Drug Deliv Rev 55: 1259–1350Google Scholar
  14. 14.
    Harris JM, Veronese FM (eds): (2008) Peptide and protein PEGylation III: Advances in chemistry and clinical applications. Adv Drug Deliv Rev 60: 1–88Google Scholar
  15. 15.
    Duncan R (2003) The dawning era of polymer therapeutics. Nature Rev Drug Discov 2: 347–360CrossRefGoogle Scholar
  16. 16.
    Thordarson P, Le Droumaguet B, Velonia K (2006) Well-defined protein-polymer conjugates: Synthesis and potential applications. Appl Microbiol Biotechnol 73: 243–254PubMedCrossRefGoogle Scholar
  17. 17.
    Zalipsky S (1995) Chemistry of polyfethylene glycol) conjugates with biologically active molecules. Adv Drug Deliv Rev 16: 157–182CrossRefGoogle Scholar
  18. 18.
    Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54: 459–476PubMedCrossRefGoogle Scholar
  19. 19.
    Pasut G, Veronese FM (2006) PEGylation of proteins as tailored chemistry for optimized bioconjugates. Adv Polym Sci 192: 95–134CrossRefGoogle Scholar
  20. 20.
    Veronese FM (2001) Peptide and protein PEGylation: A review of problems and solutions. Biomaterials 22: 405–417PubMedCrossRefGoogle Scholar
  21. 21.
    Reichert JM (2003) Trends in development and approval times for new therapeutics in the United States. Nature Rev Drug Discov 2: 695–702CrossRefGoogle Scholar
  22. 22.
    Gentle I, DeSouza I, Baca M (2004) Direct production of proteins with N-terminal cysteine for site-specific conjugation. Bioconjug Chem 15: 658–663PubMedCrossRefGoogle Scholar
  23. 23.
    Goodson RJ, Katre NV (1990) Site-directed PEGylation of recombinant interleukin-2 at its glycosylation site. Biotechnology 8: 343–346PubMedCrossRefGoogle Scholar
  24. 24.
    Doherty DH, Rosendahl MS, Smith DJ, Hughes JM, Chilpala EA, Cox GN (2005) Site-specific PEGylation of engineered cysteine analogs of recombinant human granulocyte-macrophage colony-stimulating factor. Bioconjug Chem 16: 1291–1298PubMedCrossRefGoogle Scholar
  25. 25.
    Wetzel R, Halualani R, Stults JT, Quan C (1990) A general method for highly selective crosslinking of unprotected polypeptides via pH-controlled modification of N-terminal α-amino groups. Bioconjug Chem 1: 114–122PubMedCrossRefGoogle Scholar
  26. 26.
    Wang YS, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterization of PEGylated recombinant interferon 2b and its therapeutic implications. Adv Drug Deliv Rev 54: 547–570PubMedCrossRefGoogle Scholar
  27. 27.
    Lee H, Jang H, Ryu S, Park T (2003) N-Terminal site-specific mono-PEGylation of epidermal growth factor. Pharm Res 20: 818–825PubMedCrossRefGoogle Scholar
  28. 28.
    Kinstler O, Molineux G, Treuheit M, Ladd D, Gegg C (2002) Mono-N-terminal poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 54: 477–485PubMedCrossRefGoogle Scholar
  29. 29.
    Gaertner HF, Offord RE (1996) Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins. Bioconjug Chem 7: 38–44PubMedCrossRefGoogle Scholar
  30. 30.
    Sato H, Ikeda M, Suzuki K, Hirayama K (1996) Site-specific modification of interleukin-2 by the combined use of genetic engineering techniques and transglutaminase. Biochemistry 35: 13072–13080PubMedCrossRefGoogle Scholar
  31. 31.
    Sato H, Yamamoto Y, Hayashi E, Takahara Y (2000) Transglutaminase-mediated dual and site-specific incorporation of poly(ethylene glycol) derivatives into a chimeric interleukin-2. Bioconjug Chem 11: 502–509PubMedCrossRefGoogle Scholar
  32. 32.
    Sato H, Hayashi E, Yamada N, Yatagai M, Takahara Y (2001) Further studies on the site-specific protein modification by microbial transglutaminase. Bioconjug Chem 12: 701–710PubMedCrossRefGoogle Scholar
  33. 33.
    Sato H (2002) Enzymatic procedure for site-specific PEGylation of proteins. Adv Drug Deliv Rev 54: 487–504Google Scholar
  34. 34.
    Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60: 13–28PubMedCrossRefGoogle Scholar
  35. 35.
    Folk JE (1980) Transglutaminases. Annu Rev Biochem 49: 517–531PubMedCrossRefGoogle Scholar
  36. 36.
    Lorand L, Conrad SM (1984) Transglutaminases. Mol Cell Biochem 58: 9–35PubMedCrossRefGoogle Scholar
  37. 37.
    Folk JE (1983) Mechanism and basis for specificity of transglutaminase-catalyzed ε-(γ-glutamyl) lysine bond formation. Adv Enzymol Relat Areas Mol Biol 54: 1–56PubMedCrossRefGoogle Scholar
  38. 38.
    Gorman JJ, Folk JE (1980) Structural features of glutamine substrates for human plasma factor XIIIa (activated blood coagulation factor XIII). J Biol Chem 255: 419–427PubMedGoogle Scholar
  39. 39.
    Gorman JJ, Folk JE (1984) Structural features of glutamine substrates for transglutaminases: Role of extended interactions in the specificity of human plasma factor XIIIa and of the guinea pig liver enzyme. J Biol Chem 259: 9007–9010PubMedGoogle Scholar
  40. 40.
    Griffin R, Casadio R, Bergamini CM (2002) Transglutaminases: Nature’s biological glues. Biochem J 368: 377–396PubMedCrossRefGoogle Scholar
  41. 41.
    Folk JE, Finlayson JS (1977) The ε-(γ-glutamyl)lysine crosslink and the catalytic role of trans-glutaminases. Adv Protein Chem 31: 1–133PubMedCrossRefGoogle Scholar
  42. 42.
    Mero A, Spolaore B, Veronese FM, Fontana A (2009) Transglutaminase-mediated PEGylation of proteins: Direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug Chem 20: 384–389PubMedCrossRefGoogle Scholar
  43. 43.
    Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characterization of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53: 2613–2617Google Scholar
  44. 44.
    Washizu K, Ando K, Koiked S, Hiros S, Matsuura A, Akagi H, Motoki M, Takeuchi K (1994) Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci Biotechnol Biochem 58: 82–87PubMedCrossRefGoogle Scholar
  45. 45.
    Kanaji T, Ozaki H, Takao T, Kawajiri H, Ide H, Motoki M, Shimonishi Y (1993) Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112. J Biol Chem 268: 11565–11572PubMedGoogle Scholar
  46. 46.
    Kashiwagi T, Yokoyama K, Ishikawa K, Ono K, Ejima D, Matui H, Suzuki E (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 277: 44252–44260PubMedCrossRefGoogle Scholar
  47. 47.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28: 235–242PubMedCrossRefGoogle Scholar
  48. 48.
    Yee VC, Pedersen LC, Le Trong I, Bishop PD, Steukamp RE, Teller DC (1994) Three-dimensional structure of a transglutaminase: Human blood coagulation factor XIII. Proc Natl Acad Sci USA 91:7296–7300PubMedCrossRefGoogle Scholar
  49. 49.
    Menéndez O, Rawel H, Schwarzenbolz U, Henle T (2006) Structural changes of microbial transglutaminase during thermal and high-pressure treatment. J Agric Food Chem 54: 1716–1721PubMedCrossRefGoogle Scholar
  50. 50.
    Zhu Y, Tramper J (2008) Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 26: 559–565PubMedCrossRefGoogle Scholar
  51. 51.
    Zhu Y, Rinzema A, Tramper J, Bol J (1995) Microbial transglutaminases: A review of its production and application in food processing. Appl Microbiol Biotechnol 44: 277–282CrossRefGoogle Scholar
  52. 52.
    Yokohama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminases. Appl Microbiol Biotechnol 64: 447–454CrossRefGoogle Scholar
  53. 53.
    Mariniello L, Porta R (2005) Transglutaminases as biotechnological tools. In: K Mehta, R Eckert (eds): Transglutaminase. Prog Exp Tum Res, Basel, Karger, 38: 174–191Google Scholar
  54. 54.
    Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nature Rev Immunol 6: 595–601CrossRefGoogle Scholar
  55. 55.
    Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26: 453–479PubMedCrossRefGoogle Scholar
  56. 56.
    Brandhuber BJ, Boone T, Kenney WC, McKay DB (1987) Three-dimensional structure of interleukin-2. Science 238: 1707–1709PubMedCrossRefGoogle Scholar
  57. 57.
    Cohen FE, Kosen PA, Kuntz ID, Epstein LB, Ciardelli TL, Smith KA (1986) Structure-activity studies of interleukin-2. Science 234: 349–352PubMedCrossRefGoogle Scholar
  58. 58.
    Mott HR, Baines BS, Hall RM, Cooke RM, Driscoll PC, Weir MP, Campbell ID (1995) The solution structure of the F42A mutant of human interleukin-2. J Mol Biol 247: 979–994PubMedCrossRefGoogle Scholar
  59. 59.
    Arkin MA, Randal M, DeLano WL, Hyde J, Luong TN, Oslob JD, Raphael DR, Taylor L, Wang J, McDowell RS et al. (2003) Binding of small molecules to an adaptive protein-protein interface. Proc Natl Acad Sci USA 100: 1603–1608PubMedCrossRefGoogle Scholar
  60. 60.
    Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280: 558–563PubMedCrossRefGoogle Scholar
  61. 61.
    Sternberg MJE, Grace DEP, Phillips DC (1979) Dynamic information from protein crystallography: An analysis of temperature factors from refinement of the hen egg-white lysozyme. J Mol Biol 130: 231–253PubMedCrossRefGoogle Scholar
  62. 62.
    Ringe D, Petsko GA (1985) Mapping protein dynamics by X-ray diffraction. Prog Biophys Mol Biol 45: 197–235PubMedCrossRefGoogle Scholar
  63. 63.
    Ringe D, Petsko GA (1986) Study of protein dynamics by X-ray diffraction. Methods Enzymol 131:389–433PubMedCrossRefGoogle Scholar
  64. 64.
    Kundu S, Melton JS, Sorensen DC, Phillips Jr GN (2002) Dynamics of proteins in crystals: Comparison of experiment with simple models. Biophys J 83: 723–732PubMedCrossRefGoogle Scholar
  65. 65.
    Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G (2003) Improved amino acid flexibility parameters. Protein Sci 12: 1060–1072PubMedCrossRefGoogle Scholar
  66. 66.
    Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, Lawson JD, Dunker AK (2004) Protein flexibility and intrinsic disorder. Protein Sci 13: 71–80PubMedCrossRefGoogle Scholar
  67. 67.
    Akbarzadeh S, Layton JE (2001) Granulocyte colony-stimulating factor receptor: Structure and function. Vitam Horm 63: 159–194PubMedCrossRefGoogle Scholar
  68. 68.
    Zink T, Ross A, Luers K, Cieslar C, Rudolph R, Holak TA (1994) Structure and dynamics of the human granulocyte colony-stimulating factor determined by NMR spectroscopy: Loop mobility in a four-helix-bundle protein. Biochemistry 33: 8453–8463PubMedCrossRefGoogle Scholar
  69. 69.
    Hill CP, Osslund TD, Eisenberg D (1993) The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proc Natl Acad Sci USA 90: 5167–5171PubMedCrossRefGoogle Scholar
  70. 70.
    Morstyn G, Dexter TM (1994) Neopogen (r-metHuG-CSF) in clinical practice. M. Dekker, New YorkGoogle Scholar
  71. 71.
    Weite K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G (1996) Filgrastim (r-metHuG-CSF): The first 10 years. Blood 88: 1907–1929Google Scholar
  72. 72.
    Lubenau H, Bias P, Maly AK, Siegler KE, Mehltretter K (2009) Pharmacokinetic and pharmacodynamic profile of new biosimilar filgrastim XM02 equivalent to marketed filgrastim Neupogen: Single-blind, randomized, crossover trial. BioDrugs 23: 43–51PubMedCrossRefGoogle Scholar
  73. 73.
    Herman AC, Boone TC, Lu HS (1996) Characterization, formulation, and stability of Neupogen (Filgrastim), a recombinant human granulocyte-colony stimulating factor. Pharm Biotechnol 9: 303–328PubMedCrossRefGoogle Scholar
  74. 74.
    Molineux G (2004) The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des 10: 1235–1244PubMedCrossRefGoogle Scholar
  75. 75.
    Piedonte DM, Treuheit MJ (2008) Formulation of Neulasta (pegfilgrastim). Adv Drug Deliv Rev 60: 50–58CrossRefGoogle Scholar
  76. 76.
    Veronese FM, Mero A, Caboi F, Sergi M, Marongiu C, Pasut G (2007) Site-specific PEGylation of G-CSF by reversible denaturation. Bioconjug Chem 18: 1824–1830PubMedCrossRefGoogle Scholar
  77. 77.
    Tonon G, Orsini G (2008) G-CSF site-specific mono-conjugates. Patent WO/2008/7017603, Int. Application No. PCT/EP2007/057824Google Scholar
  78. 78.
    Li CH (1982) Human growth hormone: 1974–1981. Mol Cell Biochem 46: 31–41PubMedGoogle Scholar
  79. 79.
    Clark R, Olson K, Fuh G, Marian M, Mortensen D, Teshima G, Chang S, Chu H, Mukku V, Canova-Davis E et al. (1996) Long-acting growth hormones produced by conjugation with poly(ethylene glycol). J Biol Chem 271: 21969–21977PubMedCrossRefGoogle Scholar
  80. 80.
    Cox GN, Rosendahl MS, Chlipala EA, Smith DJ, Carlson SJ, Doherty DH (2007) A long-acting mono-PEGylated human growth hormone analog is a potent stimulator of weight gain and bone growth in hypophysectomized rats. Endocrinology 148: 1590–1597PubMedCrossRefGoogle Scholar
  81. 81.
    Dorwald F, Johansen N, Iversen L (2006) Transglutaminase-mediated conjugation of growth hormone. Patent WO/2006/134148, Int. Application No. PCT/EP2006/063246Google Scholar
  82. 82.
    de Vos AM, Ultsch MH, Kossiakoff AA (1992) Human growth hormone and extracellular domain of its receptor: Crystal structure of the complex. Science 255: 306–312PubMedCrossRefGoogle Scholar
  83. 83.
    Ultsch MH, Somers W, Kossiakoff AA, de Vos AM (1994) The crystal structure of affinitymatured human growth hormone at 2 Å resolution. J Mol Biol 236: 286–299PubMedCrossRefGoogle Scholar
  84. 84.
    Spolaore B, Polverino de Laureto P, Zambonin M, Fontana A (2004) Limited proteolysis of human growth hormone at low pH: Isolation, characterization and complementation of the two biologically relevant fragments 1–44 and 45–191. Biochemistry 43: 6576–6586PubMedCrossRefGoogle Scholar
  85. 85.
    Polverino de Laureto P, Toma S, Tonon G, Fontana A (1995) Probing the structure of human growth hormone by limited proteolysis. Int J Pept Prot Res 45: 200–208Google Scholar
  86. 86.
    Jelkmann W (2007) Erythropoietin after a century of research: Younger than ever. Eur J Haematol 78: 183–205PubMedCrossRefGoogle Scholar
  87. 87.
    Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31:290–299PubMedCrossRefGoogle Scholar
  88. 88.
    Pool CT (2004) Formation of novel erythropoietin conjugates using transglutaminase. Patent WO/2004/148667, Int. Application No. PCT/US2004/016670Google Scholar
  89. 89.
    Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J et al. (1998) Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395: 511–516PubMedCrossRefGoogle Scholar
  90. 90.
    Cheetham JC, Smith DM, Aoki KH, Stevenson JL, Hoeffel TJ, Syed RS, Egrie J, Harvey TS (1998) NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nature Struct Biol 5: 861–866PubMedCrossRefGoogle Scholar
  91. 91.
    Evans SV, Brayer GD (1990) High-resolution study of the three-dimensional structure of horse heart metmyoglobin. J Mol Biol 213: 885–897PubMedCrossRefGoogle Scholar
  92. 92.
    Eliezer D, Wright PE (1996) Is apomyoglobin a molten globule? Structural characterization by NMR. J Mol Biol 263: 531–538PubMedCrossRefGoogle Scholar
  93. 93.
    Eliezer D, Yao J, Dyson HJ, Wright PE (1998) Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nature Struct Biol 5: 148–155PubMedCrossRefGoogle Scholar
  94. 94.
    Fontana A, Zambonin M, Polverino de Laureto P, De Filippis V, Clementi A, Scaramella E (1997) Probing the conformational state of apomyoglobin by limited proteolysis. J Mol Biol 266: 223–230PubMedCrossRefGoogle Scholar
  95. 95.
    Picotti P, Marabotti A, Negro A, Musi V, Spolaore B, Zambonin M, Fontana A (2004) Modulation of the structural integrity of helix F in apomyoglobin by single amino acid replacements. Protein Sci 13: 1572–1585PubMedCrossRefGoogle Scholar
  96. 96.
    Musi V, Spolaore B, Picotti P, Zambonin M, De Filippis V, Fontana A (2004) Nicked apomyoglobin: A noncovalent complex of two polypeptide fragments comprising the entire protein chain. Biochemistry 43: 6230–6240PubMedCrossRefGoogle Scholar
  97. 97.
    Brooks CL (1992) Characterization of “native” apomyoglobin by molecular dynamics simulation. J Mol Biol 227: 375–380PubMedCrossRefGoogle Scholar
  98. 98.
    Tirado-Rives J, Jorgensen WL (1993) Molecular dynamics simulations of the unfolding of apomyoglobin in water. Biochemistry 32: 4175–4184PubMedCrossRefGoogle Scholar
  99. 99.
    Hirst JD, Brooks CL (1995) Molecular dynamics simulations of isolated helices of myoglobin. Biochemistry 34: 7614–7621PubMedCrossRefGoogle Scholar
  100. 100.
    Onufriev A, Case DA, Bashford D (2003) Structural details, pathways and energetics of unfolding apomyoglobin. J Mol Biol 325: 555–567PubMedCrossRefGoogle Scholar
  101. 101.
    Taki M, Shiota M, Taira K (2004) Transglutaminase-mediated N-and C-terminal fluorescein labelling of a protein can support the activity of the modified protein. Protein Eng Des Select 17: 119–126CrossRefGoogle Scholar
  102. 102.
    Tanaka T, Kamiya N, Nagamune T (2004) Peptidyl linkers for protein heterodimerization catalyzed by microbial transglutaminase. Bioconjug Chem 15: 491–497PubMedCrossRefGoogle Scholar
  103. 103.
    Meusel M (2004) Synthesis of hapten-protein conjugates using microbial transglutaminase. Methods Mol Biol 283: 109–123PubMedGoogle Scholar
  104. 104.
    Kamiya N, Tanaka T, Suzyuki T, Takazawa T, Takeda S, Watanabe K, Nagamune T (2003) S-Peptide as a potent peptidyl linker for protein crosslinking by microbial transglutaminase from Streptomyces mobaraensis. Bioconjug Chem 14: 351–357PubMedCrossRefGoogle Scholar
  105. 105.
    Kim E, Motoki M, Seguro K, Muhlrad A, Reisler E (1995) Conformational changes in subdomain 2 of G-actin: Fluorescence probing by dansyl-ethylenediamine attached to Gln-41. Biophys J 69: 2024–2032PubMedCrossRefGoogle Scholar
  106. 106.
    Mornet D, Ue K (1984) Proteolysis and structure of skeletal muscle actin (limited proteolysis/organization of G-actin). Proc Natl Acad Sci USA 81: 3680–3684PubMedCrossRefGoogle Scholar
  107. 107.
    Moraczewska J, Wawro B, Seguro K, Strzelecka-Golaszewska H (1999) Divalent cation-, nucleotide-and polymerization-dependent changes in the conformation of subdomain 2 of actin. Biophys J 11: 373–385CrossRefGoogle Scholar
  108. 108.
    Khaitlina SY, Moraczewska J, Strzelecka-Golaszewska H (1993) The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. Eur J Biochem 218: 911–920PubMedCrossRefGoogle Scholar
  109. 109.
    Borovikov YS, Moraczewska J, Khoroshev MI, Strzelecka-Golaszewska H (2000) Proteolytic cleavage of actin within the DNase-I-binding loop changes the conformation of F-actin and its sensitivity to myosin binding. Biochim Biophys Acta 1478: 138–151PubMedGoogle Scholar
  110. 110.
    Klenchin VA, Allingham JS, King R, Tanaka J, Marriott G, Rayment I (2003) Trisoxazole macrolide toxins mimic the binding of actin-capping proteins to actin. Nature Struct Biol 10: 1058–1063PubMedCrossRefGoogle Scholar
  111. 111.
    Matsumura Y, Yuporn C, Kumazawa Y, Ohtsuka T, Mori T (1996) Enhanced susceptibility to transglutaminase reaction of α-lactalbumin in molten globule state. Biochim Biophys Acta 1292: 69–76PubMedGoogle Scholar
  112. 112.
    Gu YS, Matsumura Y, Yamaguchi S, Mori T (2001) Action of protein-glutaminase on α-lactalbumin in the native and molten globule states. J Agric Food Chem 49: 5999–6005PubMedCrossRefGoogle Scholar
  113. 113.
    Nieuwenhuisen WF, Dekker HL, De Koning LJ, Groneveld T, De Koster CG, De Jong GA (2003) Modification of glutamine and lysine residues in holo and apo α-lactalbumin with microbial transglutaminase. J Agric Food Chem 51: 7132–7139CrossRefGoogle Scholar
  114. 114.
    Lee DS, Matsumoto S, Matsumura Y, Mori T (2002) Identification of the ε-(γ-glutamyl)lysine crosslinking sites in α-lactalbumin polymerized by mammalian and microbial transglutaminases. J Agric Food Chem 50: 7412–7419PubMedCrossRefGoogle Scholar
  115. 115.
    Kuwajima K (1996) The molten globule state of α-lactalbumin. FASEB J 10: 102–109PubMedGoogle Scholar
  116. 116.
    Schulman BA, Kim PS, Dobson CM, Redfield C (1997) A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nature Struct Biol 4: 630–634PubMedCrossRefGoogle Scholar
  117. 117.
    Polverino de Laureto P, De Filippis V, Di Bello M, Zambonin M, Fontana A (1995) Probing the molten globule state of α-lactalbumin by limited proteolysis. Biochemistry 34: 12596–12604PubMedCrossRefGoogle Scholar
  118. 118.
    Polverino de Laureto P, Frare E, Gottardo R, Fontana A (2002) Molten globule of bovine α-lactalbumin at neutral pH induced by heat, trifluoroethanol and oleic acid: A comparative analysis by circular dichroism spectroscopy and limited proteolysis. Proteins: Struct Funct Genet 49: 385–397CrossRefGoogle Scholar
  119. 119.
    Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12: 54–60PubMedCrossRefGoogle Scholar
  120. 120.
    Dunker AK, Brown CJ, Lawson LD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41: 6573–6582PubMedCrossRefGoogle Scholar
  121. 121.
    Uversky VN (2002) Natively unfolded proteins: A point where biology waits for physics. Protein Sci 11: 739–756PubMedCrossRefGoogle Scholar
  122. 122.
    Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27: 527–533PubMedCrossRefGoogle Scholar
  123. 123.
    Junn E, Ronchetti RD, Quezabo MM, Kim SY, Mouradian MM (2003) Tissue transglutaminaseinduced aggregation of α-synuclein: Implications for Lewy body formation in Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 100: 2047–2052PubMedCrossRefGoogle Scholar
  124. 124.
    Prasana Murthy SN, Wilson JH, Lukas TJ, Kuret J, Lorand L (1998) Crosslinking sites of the human tau protein probed by reactions with human transglutaminase. J Neurochem 71: 2607–2614CrossRefGoogle Scholar
  125. 125.
    Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becker MW, Steinman L (1999) Transglutaminase aggregates huntingtin into non-amyloidogenic polymers and its enzymatic activity increases in Huntington’s disease brain nuclei. Proc Natl Acad Sci USA 96: 7388–7393PubMedCrossRefGoogle Scholar
  126. 126.
    Karpuj M, Steinman L (2004) The multifaceted role of transglutaminase in neurodegeneration. Amino Acids 26: 373–379PubMedCrossRefGoogle Scholar
  127. 127.
    Karpuj MV, Becker MW, Steinman L (2002) Evidence for a role for transglutaminase in Huntington’s disease and the potential therapeutic implications. Neurochem Int 40: 31–36PubMedCrossRefGoogle Scholar
  128. 128.
    Lesort M, Chun W, Johson GVW, Ferrante RJ (1999) Tissue transglutaminase is increased in Huntington’s disease brain. J Neurochem 73: 2018–2027PubMedGoogle Scholar
  129. 129.
    Selkoe DJ, Abraham C, Ihara Y (1982) Brain transglutaminase: In vitro crosslinking of human neurofilament proteins into insoluble polymers. Proc Natl Acad Sci USA 79: 6070–6074PubMedCrossRefGoogle Scholar
  130. 130.
    Johnson GV, Cox TM, Lockar JP, Zimmerman MD, Miller ML, Powers RE (1997) Transglutaminase activity is increased in Alzheimer’s disease in brain. Brain Res 75: 323–329CrossRefGoogle Scholar
  131. 131.
    Konno T, Morii T, Hirata A, Sato S, Oiki S, Ikura K (2005) Covalent blocking of fibril formation and aggregation of intracellular amyloidogenic proteins by transglutaminase-catalyzed intramolecular crosslinking. Biochemistry 44: 2072–2079PubMedCrossRefGoogle Scholar
  132. 132.
    Coussons PJ, Price NC, Kelly SM, Smith B, Sawyer L (1992) Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides. Biochem J 282: 929–930PubMedGoogle Scholar
  133. 133.
    Case A, Smith RL (2003) Kinetic analysis of the action of tissue transglutaminase on peptide and protein substrates. Biochemistry 42: 9466–9481PubMedCrossRefGoogle Scholar
  134. 134.
    Ohtsuka T, Ota M, Nio N, Motoki M (2000) Comparison of substrate specificities of transglutaminases using synthetic peptides as acyl donors. Biosci Biotechnol Biochem 64: 2608–2613PubMedCrossRefGoogle Scholar
  135. 135.
    Sugimura Y, Hosono M, Wada F, Yoshimura T, Maki M, Hitomi K (2006) Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: Identification of peptide substrates for TGase 2 and Factor XIIIA. J Biol Chem 281: 17699–17706PubMedCrossRefGoogle Scholar
  136. 136.
    Facchiano F, Facchiano A (2005) Transglutaminases and their substrates. Prog Exp Tumor Res 38: 37–57PubMedCrossRefGoogle Scholar
  137. 137.
    Facchiano A, Facchiano F (2009) Transglutaminases and their substrates in biology and human diseases: 50 years of growing. Amino Acids 36: 599–614PubMedCrossRefGoogle Scholar
  138. 138.
    Sugimura Y, Yokoyama K, Nio N, Maki M, Hitomi K (2008) Identification of preferred substrate sequences of microbial transglutaminase from Streptomyces mobaraensis using a phage-displayed peptide library. Arch Biochem Biophys 477: 379–383PubMedCrossRefGoogle Scholar
  139. 139.
    Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27: 157–162PubMedCrossRefGoogle Scholar
  140. 140.
    Hubbard SJ, Eisenmenger F, Thornton JM (1994) Modelling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3: 757–768PubMedCrossRefGoogle Scholar
  141. 141.
    Hubbard SJ (1998) The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta 1382: 191–206PubMedGoogle Scholar
  142. 142.
    Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25: 1847–1851PubMedCrossRefGoogle Scholar
  143. 143.
    Fontana A, Polverino de Laureto P, De Filippis V, Scaramella E, Zambonin M (1999) Limited proteolysis in the study of protein conformation. In: EE Sterchi, W Stöcker (eds): Proteolytic Enzymes: Tools and Targets. Springer Verlag, Heidelberg, 257–284Google Scholar
  144. 144.
    Fontana A, Polverino de Laureto P, De Filippis V, Scaramella E, Zambonin M (1997) Probing the partly folded states of proteins by limited proteolysis. Folding Des 2: R17–R26CrossRefGoogle Scholar
  145. 145.
    Fontana A, Polverino de Laureto P, Spolaore B, Frare E, Picotti P, Zambonin M (2004) Probing protein structure by limited proteolysis. Acta Biochim Pol 51: 299–321PubMedGoogle Scholar
  146. 146.
    Tyndall JDA, Fairlie DP (1999) Conformational homogeneity in molecular recognition by proteolytic enzymes. J Mol Recognit 12: 363–370PubMedCrossRefGoogle Scholar
  147. 147.
    Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active site. Chem Rev 105: 973–999PubMedCrossRefGoogle Scholar
  148. 148.
    Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acid Res 32: 1037–1049PubMedCrossRefGoogle Scholar
  149. 149.
    Zheng J, Trafny EA, Knighton DR, Xuong NH, Taylor SS, Ten Eyck LF, Sowadski JM (1993) A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr 49: 362–365Google Scholar
  150. 150.
    Reichert JM (2006) Trends in US approvals: New biopharmaceuticals and vaccines. Trends Biotechnol 24: 293–298PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Angelo Fontana
    • 1
  • Barbara Spolaore
    • 1
  • Anna Mero
    • 2
  • Francesco M. Veronese
    • 2
  1. 1.CRIBI, Biotechnology CentreUniversity of PaduaPaduaItaly
  2. 2.Department of Pharmaceutical SciencesUniversity of PaduaPaduaItaly

Personalised recommendations