Advertisement

Enzymatic techniques for PEGylation of biopharmaceuticals

  • Mauro Sergi
  • Francesca Caboi
  • Carlo Maullu
  • Gaetano Orsini
  • Giancarlo Tonon
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

Modification of therapeutic proteins and peptides by polyethylene glycol conjugation is a well known method to improve the pharmacological properties of such drugs.

Here we describe an alternative way of PEGylation from classic chemical methods, taking advantage of enzymes able to specifically modify some amino acid side chains, in particular glycosyltransferases and transglutaminases.

A few examples are here described, in particular granulocyte-colony stimulating factor, which has been successfully PEGylated by enzymatic methods leading to a new long-lasting compound presently under evaluation in clinical studies.

Keywords

Acyl Acceptor Enzymatic Technique Microbial Transglutaminase Adenosine Deaminase Deficiency Protein PEGylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harris JM (ed.) (1992) Polyethylene glycol chemistry, biotechnical and biomedical applications. Plenum Press, New YorkGoogle Scholar
  2. 2.
    Harris JM, Zalipsky S (eds) (1997) Poly(ethylene glycol) chemistry and biological applications. American Chemical Society, Washington DCGoogle Scholar
  3. 3.
    Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54: 459–476CrossRefPubMedGoogle Scholar
  4. 4.
    Harris JM, Veronese FM (2003) Peptide and protein pegylation II — Clinical evaluation. Adv Drug Deliv Rev 55: 1259–1260CrossRefGoogle Scholar
  5. 5.
    Veronese FM, Harris JM (2008) Peptide and protein PEGylation III: Advances in chemistry and clinical applications. Adv Drug Deliv Rev 60: 1–2CrossRefGoogle Scholar
  6. 6.
    Levy Y, Hershfield MS, Fernandez-Mejia C et al. (1988) Adenosine deaminase deficiency with late onset of recurrent infections: response to treatment with polyethylene glycol-modified adenosine deaminase. J Pediatr 113(2): 312–317CrossRefPubMedGoogle Scholar
  7. 7.
    Graham LM (2003) Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 55: 1293–1302CrossRefPubMedGoogle Scholar
  8. 8.
    Wang YS, Youngster S, Grace M et al. (2002) Structural and biological characterization of PEGylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev 54: 547–570CrossRefPubMedGoogle Scholar
  9. 9.
    Bailon P, Palleroni A, Schaffer CA et al. (2001) Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis. Bioconjug Chem. 12(2): 195–202CrossRefPubMedGoogle Scholar
  10. 10.
    Kinstler OB, Brems DN, Lauren SL et al. (1996) Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm Res 13(7): 996–1002CrossRefPubMedGoogle Scholar
  11. 11.
    Cox G (1999) Derivatives of growth hormone and related proteins. WO 1999/00388711Google Scholar
  12. 12.
    Goodson RJ, Katre NV (1990) Site-directed pegylation of recombinant interleukin-2 at its glycosylate site. Biotechnology (NY) 8(4): 343–346CrossRefGoogle Scholar
  13. 13.
    Spiro RG (1973) Glycoproteins. Adv Protein Chem 27: 349–467CrossRefPubMedGoogle Scholar
  14. 14.
    Roseman S (2001) Reflections on glycobiology. J Biol Chem 276(45): 41527–41542CrossRefPubMedGoogle Scholar
  15. 15.
    Ernst B, Sinay P, Hart G (eds): (2000) Oligosaccharides in Chemistry and Biology — A Comprehensive Handbook. Wiley-VCH Verlag GmbH, GermanyGoogle Scholar
  16. 16.
    Shriver Z, Raguram S, Sasisekharan R (2004) Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 3: 863–873CrossRefPubMedGoogle Scholar
  17. 17.
    Verez-Bencomo V, Fernández-Santana V, Hardy E et al. (2004) A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 305(5683): 522–525CrossRefPubMedGoogle Scholar
  18. 18.
    Legendre H, Decaestecker C, Goris Gbenou M et al. (2004) Prognostic stratification of Dukes B colon cancer by a neoglycoprotein. Int J Oncol 25(2): 269–276PubMedGoogle Scholar
  19. 19.
    Davis BG, Robinson MA (2002) Drug delivery systems based on sugar-macromolecule conjugates. Curr Opin Drug Discov Devel 5(2): 279–288PubMedGoogle Scholar
  20. 20.
    Teranishi K, Gollackner B, Bühler L et al. (2002) Depletion of anti-gal antibodies in baboons by intravenous therapy with bovine serum albumin conjugated to gal oligosaccharides. Transplantation 73(1): 129–139CrossRefPubMedGoogle Scholar
  21. 21.
    DeFrees S, Wang ZG, Xing R et al. (2006) GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 16(9): 833–843Google Scholar
  22. 22.
    Roskos LK, Lum P, Lockbaum P et al. (2006) Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol 46(7): 747–757CrossRefPubMedGoogle Scholar
  23. 23.
    Rosendahl MS, Doherty DH, Smith DJ et al. (2005) Site-specific protein PEGylation: application to cysteine analogs of recombinant human granulocyte colony-stimulating factor. BioProcess International 3: 52–62Google Scholar
  24. 24.
    Molineux G (2004) The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des 10(11): 1235–1244CrossRefPubMedGoogle Scholar
  25. 25.
    Frampton JE, Keating GM (2005) Spotlight on pegfilgrastim in chemotherapy-induced neutropenia. BioDrugs 19(6): 405–407CrossRefPubMedGoogle Scholar
  26. 26.
    Defrees S, Clausen M, Zopf DA et al. (2007) Glycopegylated Granulocyte Colony Stimulating Factor. US Patent Application 20070254836Google Scholar
  27. 27.
    Kaushansky K, Lopez JA, Brown CB (1992) Role of carbohydrate modification in the production and secretion of human granulocyte macrophage colony-stimulating factor in genetically engineered and normal mesenchymal cells. Biochemistry 31:1881–1886CrossRefPubMedGoogle Scholar
  28. 28.
    Forno G, Fogolin MB, Oggero M et al. (2004) N-and O-linked carbohydrates and glycosylation site occupancy in recombinant human granulocyte-macrophage colony-stimulating factor secreted by a Chinese hamster ovary cell line. Eur J Biochem 271: 907–919CrossRefPubMedGoogle Scholar
  29. 29.
    Defrees S, Bayer RJ, Bowec et al. (2008) Glycopegylated Follicle Stimulating Hormone. US Patent Application 20080015142Google Scholar
  30. 30.
    Defrees S, Bayer RJ, Zopf DA et al. (2006) Glycopegylated erythropoietin formulations. US Patent Application 20060287224Google Scholar
  31. 31.
    Klausen NK, Bjorn S, Behrens C et al. (2008) Pegylated Factor VII Glycoforms. US Patent Application 20080039373Google Scholar
  32. 32.
    Folk JE, Finlayson JS (1977) The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of trans-glutaminases. Adv Protein Chem 31: 1–133CrossRefPubMedGoogle Scholar
  33. 33.
    Folk JE (1980) Transglutaminases. Annu Rev Biochem 49: 517–531CrossRefPubMedGoogle Scholar
  34. 34.
    Lorand L, Conrad SM (1984) Transglutaminases. Mol Cell Biochem 58: 9–35CrossRefPubMedGoogle Scholar
  35. 35.
    Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368(Pt 2): 377–396CrossRefPubMedGoogle Scholar
  36. 36.
    Nielsen PM (1995) Reactions and Potential Industrial Applications of Transglutaminase. Review of Literature and Patent. Food Biotechnol 9: 119–156CrossRefGoogle Scholar
  37. 37.
    Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60(1): 13–28CrossRefPubMedGoogle Scholar
  38. 38.
    Coussons PJ, Price NC, Kelly SM, Smith B, Sawyer L (1992) Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides. Biochem J 282(Pt 3): 929–930PubMedGoogle Scholar
  39. 39.
    Ohtsuka T, Ota M, Nio N et al. (2000) Comparison of substrate specificities of transglutaminases using synthetic peptides as acyl donors. Biosci Biotechnol Biochem 64(12): 2608–2613CrossRefGoogle Scholar
  40. 40.
    Ohtsuka T, Sawa A, Kawabata R et al. (2000) Substrate specificities of microbial transglutaminase for primary amines. J Agric Food Chem 48(12): 6230–6233CrossRefPubMedGoogle Scholar
  41. 41.
    Kashiwagi T, Yokoyama K, Ishikawa K et al. (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 277(46): 44252–44260CrossRefGoogle Scholar
  42. 42.
    Sato H, Yamamoto K, Hayashi E et al. (2000) Transglutaminase-mediated dual and site-specific incorporation of poly(ethylene glycol) derivatives into a chimeric interleukin-2. Bioconjug Chem 11(4): 502–509CrossRefPubMedGoogle Scholar
  43. 43.
    Sato H, Hayashi E, Yamada N et al. (2001) Further studies on the site-specific protein modification by microbial transglutaminase. Bioconjug Chem 12(5): 701–710CrossRefPubMedGoogle Scholar
  44. 44.
    Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 54(4): 487–504CrossRefPubMedGoogle Scholar
  45. 45.
    Tonon G, Orsini G, Schrepper R et al. (2008) G-CSF site-specific mono-conjugates. International Patent Application WO 2008/017603Google Scholar
  46. 46.
    Veronese FM, Mero A, Spolaore B et al. (2008) Site-specific PEGylation of pharmaceutical proteins mediated by transglutaminase (Poster presented at the 35th Annual Meeting and Exposition of the Controlled Release Society, New York)Google Scholar
  47. 47.
    Bowen S, Tare N, Inoue T et al. (1999) Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony-stimulating factor mutein. Exp Hematol 27(3): 425–432CrossRefPubMedGoogle Scholar
  48. 48.
    Zundel M, Peschke B (2006) C-terminally pegylated growth hormones. WO 2006/084888Google Scholar
  49. 49.
    Macdougall IC (2005) CERA (Continuous Erythropoietin Receptor Activator): a new erythropoiesis-stimulating agent for the treatment of anemia. Curr Hematol Rep 4(6): 436–440Google Scholar
  50. 50.
    Pool CT (2004) Formation of novel erythropoietin conjugates using transglutaminase. International Patent Application WO 2004/108667Google Scholar
  51. 51.
    Fontana A, Fassina G, Vita C et al. (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25: 1847–1851CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Mauro Sergi
    • 1
    • 2
  • Francesca Caboi
    • 1
  • Carlo Maullu
    • 1
  • Gaetano Orsini
    • 1
  • Giancarlo Tonon
    • 1
  1. 1.Bio-Ker S.r.lParco Scientifico e Tecnologico della SardegnaPula, CagliariItaly
  2. 2.Ablynx nvZwijnaardeBelgium

Personalised recommendations