Reactive PEGs for protein conjugation

  • Gian Maria Bonora
  • Sara Drioli
Part of the Milestones in Drug Therapy book series (MDT)


Poly(ethylene glycol) (PEG) derivatives are the first choice of the water soluble, biocompatible polymers on hand for conjugation to proteins and polypeptides. This chapter deals with the PEG reagents that are available for the preparation of bioconjugates. The opportunities of different reactive groups on PEG are described and their different activities against the functional moieties of the amino acids are illustrated. Some attention is also given to the modification of the PEG backbone to increase its loading capacity and to eventually modify the stability of the conjugating bonds.


Protein Conjugation Tumor Necrosis Factor Receptor Type Monomethoxy Poly PEGylation Site Polyethylene Glycol Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Properties and Use of Polyethylene Glycol (1977), Hoechst Polyglycol s Katalog Google Scholar
  2. 2.
    Zalipsky S (1995) Functionalized Poly(ethylene glycol) for Preparation of Biologically Relevant Conjugates. Bioconjugate Chem., 6:150–165CrossRefGoogle Scholar
  3. 3.
    Harris JM (1985) Laboratory Synthesis of Polyethylene Glycol Derivatives. JMS-Rev. Macromol. Chem. Phys., C25:325–373Google Scholar
  4. 4.
    Lundblad RL (2005) Chemical Reagents for Protein Modification 3rd Edit. CRC PressGoogle Scholar
  5. 5.
    Pedder S (2001) PEGASYS®: A true once-a-week antiviral. Annual Meeting, American Association of the Study of Liver Diseases (AASLD), Dallas, TX Google Scholar
  6. 6.
    Sartore L, Caliceti P, Schiavon O, Monfardini C, Veronese FM (1991) Accurate evaluation method of the polymer content in monomethoxy poly(ethylene glycol)modified proteins based on amino acid analysis. Appl. Biochem. Biotechnol., 31:213–222.CrossRefPubMedGoogle Scholar
  7. 7.
    Zalipsky S, Lee C (1992) Use of functionalized poly(ethylene glycol) s for modification of polypeptides. In: JM Harris, S Zalipsky (Eds.), Polyethylene Glycol Chemistry, Biotechnical and Biomedical Applications, Plenum, New York, pp. 347–370Google Scholar
  8. 8.
    Francis GE, Fisher D, Delgado C, Malik F, Gardiner A, Neale D (1998) PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimization of coupling techniques. Int. J. Hematol., 68:1–18CrossRefPubMedGoogle Scholar
  9. 9.
    Harris JM, Herati RM (1993) Preparation and use of poly-ethylene glycol propionaldehyde. US Patent 5,252,714Google Scholar
  10. 10.
    Kinstler OB, Brems DN, Lauren SL (1996) Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm Res., 13:996–1002CrossRefPubMedGoogle Scholar
  11. 11.
    Kinstler OB, Gabriel NE, Farrar CE, DePrince RB (1999) N-terminally chemically modified protein compositions and methods, US Patent 5,985,265Google Scholar
  12. 12.
    Edwards CK (1993) PEGylated recombinant human soluble tumor necrosis factor receptor type I (rHu-sTNF-RI): A novel high-affinity TNF receptor designed for chronic inflammatory diseases. Ann. Rheum. Dis., 58:173–181Google Scholar
  13. 13.
    Zalipsky S, Seltzer R, Menon-Rudolph S (1992) Evaluation of a new reagent for covalent attachment of polyethylene glicol to proteins. Biotechnol. Appl. Biochem., 15:100–114PubMedGoogle Scholar
  14. 14.
    Miron T, Wilchek M (1993) A simplified method for the preparation of succinimidyl carbonate polyethylene glycol for coupling to proteins. Bioconjug. Chem., 4:568–569CrossRefPubMedGoogle Scholar
  15. 15.
    Dolence EK, Hu C, Tsang R, Sanders CG, Osaki S (1997) Electrophilic polyethylene oxides for the modification of polysaccharides, polypeptides (proteins) and surfaces. US Patent 5,650,234Google Scholar
  16. 16.
    Veronese FM, Largajolli R, Boccu E, Benassi CA, Schiavon O (1985) Activation of monomethoxy poly(ethylene glycol) by phenylchloroformate and modification of ribonuclease and superoxide dismutase. Appl. Biochem. Biotechnol., 11:141–152CrossRefPubMedGoogle Scholar
  17. 17.
    Beauchamp CO, Gonias SL, Menapace DP, Pizzo SV (1983) A new procedure for the synthesis of polyethylene glycolglycol protein adducts, effects on function, receptor recognition and clearance of superoxide dismutase, lactoferrin and a2-macro-globulin. tAnal. Biochem., 131:25–33CrossRefPubMedGoogle Scholar
  18. 18.
    Carter MC, Meyerhoff ME (1985) Instability of succinyl ester linkages in 029-monosuccinyl cyclic AMP-protein conjugates at neutral pH. J. Immunol. Methods, 81:245–257CrossRefPubMedGoogle Scholar
  19. 19.
    Abuchowski J, Kazo GM, Verhoest CR (1984) Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates. Cancer Biochem. Biophys., 7:175–186PubMedGoogle Scholar
  20. 20.
    Zalipsky S, Barany G (1986) Preparation of polyethylene glycol derivatives with two different functional groups at the termini. Polym. Preprints, 27:1–2Google Scholar
  21. 21.
    Zalipsky S, Barany G (1990) Facile synthesis of α-hydroxy-ω-carboxymethylpolyethylene oxide. J. Bioact. Compat. Polym., 5:227–231CrossRefGoogle Scholar
  22. 22.
    Harris JM, Kozlowski A (1997) Polyethylene glycol and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications. US Patent 5,672,662Google Scholar
  23. 23.
    Sartore L, Caliceti P, Schiavon O, Veronese FM (1991) Enzyme modification by MPEG with amino acid or peptide as spacer arm. Appl. Biochem. Biotechnol., 27:55–63CrossRefGoogle Scholar
  24. 24.
    Veronese FM, Saccà B, Polverino de Laureto P, Sergi M, Caliceti P, Schiavon O (2001) New PEGs for peptide and protein modification, suitable for identification of the PEGylation site. Bioconjugate Chem., 12:62–70CrossRefGoogle Scholar
  25. 25.
    Goodson RJ, Katre NV (1990) Site-directed pegylation of recomproteins binant interleukin-2 at its glycosylation site. Biotechnology, 8:343–346CrossRefPubMedGoogle Scholar
  26. 26.
    Kogan TP (1992) The synthesis of substituted methoxy-polymer (ethylene glycol) derivatives suit able for selective protein modification. Synth. Commun., 22:2417–2424CrossRefGoogle Scholar
  27. 27.
    Morpurgo M, Veronese FM, Kachensky D, Harris JM (1976) Preparation and characterization of poly(ethylene glycol) vinyl sulfone. Bioconjug. Chem., 7:363–368CrossRefGoogle Scholar
  28. 28.
    Woghiren C, Sharma B, Stein S (1993) Protected thiol-polycoupling ethylene glycol: a new acti vated polymer for reversibile protein modification. Bioconjug. Chem., 4:314–318CrossRefPubMedGoogle Scholar
  29. 29.
    Gard FRN (1972) Carboxymethylation. Methods Enzymol., B25:424–449CrossRefGoogle Scholar
  30. 30.
    Greenwald RB, Pendri A, Bolikal D (1995) Highly soluble taxol derivatives: 7-polyethylene glycol carbamates and carbonates. J. Org. Chem., 60:331–336CrossRefGoogle Scholar
  31. 31.
    Pace G, Veronese FM, Bonora GM (1999) Synthesis and reactivity of high-molecular mass phosphorylated poly(ethylene glycol). Reactive & Functional Polimers, 41:141–148CrossRefGoogle Scholar
  32. 32.
    De Frees S, Wang ZG, Xing R (2006) GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Giycobiology 16:833–843CrossRefGoogle Scholar
  33. 33.
    Zalipski S, Menon-Rudolph S (1997) Hydrazide derivatives of poly(ethylene glycol) and their bioconjugates. Poly(ethylene glycol) chemistry and biological applications. ACS Symp Ser, 680:318–341CrossRefGoogle Scholar
  34. 34.
    Yankeelov Jr AJA (1972) Modification of arginine by diketones. Methods Enzymol., B25:566–584CrossRefGoogle Scholar
  35. 35.
    Maeda H, Kai Y, Ono K (1989) Polyethylene glycol derivatives, modified, peptides and production thereof. E.P. 0.340.741Google Scholar
  36. 36.
    Sato H (2002) Enzymatic procedure for site-specific PEGylation of proteins, Adv. Drug Deliv. Rev., 54:487–504CrossRefPubMedGoogle Scholar
  37. 37.
    Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase, Adv. Drug Deliv. Rev. 60:13–28CrossRefPubMedGoogle Scholar
  38. 38.
    Monfardini C, Schiavon O, Caliceti P, Morpurgo M, Harris JM, Veronese FM (1995) A Branched Monomethoxypoly(ethylene glycol) for Protein Modification, Bioconjugate Chem., 6:62–69CrossRefGoogle Scholar
  39. 39.
    Schiavon O, Pasut G, Moro S, Orsolini P, Guiotto A, Veronese FM (2004) PEG-Ara C conjugation for controlled release. Eur. J. Med. Chem., 39(2):123–133CrossRefPubMedGoogle Scholar
  40. 40.
    Pasut G, Scaramuzza S, Schiavon O, Mendichi R, Veronese FM (2005) PEG-epirubicin conjugates with high drug loading. J. of Bioactive and Compatible Polymers 20:213–230CrossRefGoogle Scholar
  41. 41.
    Liu X-M, Thakur A, Wang D (2007) Efficient Synthesis of Linear Multifunctional Poly(ethylene glycol) by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Biomacromolecules, 8:2653–2658CrossRefPubMedGoogle Scholar
  42. 42.
    Ballico M, Drioli S, Bonora GM (2005) MultiPEG: high molecular weight multifunctional poly(ethylen glycol)s assembled by a dendrimer-like approach. EJOC, 2064–2067Google Scholar
  43. 43.
    Drioli S, Bonora GM, Ballico M (2008) Synthesis and characterization of new multifunctional high-molecular weight PEG derivatives (MultiPEG)s. The Open Organic Chemistry Journal 2:17–25CrossRefGoogle Scholar
  44. 44.
    Harris JM, Chess RB (2003) Effect of PEGylation on Pharmaceuticals. Nature Reviews Drug Discovery 2:214–221CrossRefPubMedGoogle Scholar
  45. 45.
    Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv. Drug Del. Rev. 54:459–476CrossRefGoogle Scholar
  46. 46.
    Zhao X, Harris JM (1997) Novel degradable poly(ethylene glycol) esters for drug delivery. In: JM Harris, S Zalipsky (eds): Poly(ethylene glycol) chemistry and biological applications. American Chemical Society, Washington, DC, 458–472CrossRefGoogle Scholar
  47. 47.
    Testa B, Mayer JM (eds): (2003) Hydrolysis in drug and prodrug metabolism: Chemistry, biochemistry, and enzymology. Verlag Helvetica Chimica Acta, Wiley-VCH, SwitzerlandGoogle Scholar
  48. 48.
    Zalipsky S, Qazen M, Walker II JA, Mullah N, Quinn YP, Huang SK (1999) New detachable poly(ethylene glycol) conjugates: Cysteine-cleavable lipopolymers regenerating natural phospholipids, diacyl phosphatidylethanolamine. Bioconjug. Chem. 10:703–707CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Gian Maria Bonora
    • 1
  • Sara Drioli
    • 1
  1. 1.Department of Chemical SciencesUniversity of TriesteTriesteItaly

Personalised recommendations