Protein PEGylation, basic science and biological applications

  • Francesco M. Veronese
  • Anna Mero
  • Gianfranco Pasut
Part of the Milestones in Drug Therapy book series (MDT)


A historical overview of protein-polymer conjugation is reported here, demonstrating the superiority of poly(ethylene glycol) (PEG) among other synthetic or natural polymers, thanks to its unique properties like the absence of toxicity and immunogenicity, and a high solubility in water and in organic solvents. Furthermore, PEG is approved by the FDA for human use. Relevant physicochemical and biological properties of PEG and PEG-conjugates, as the basis of the pharmacokinetic and pharmacodynamic improvements, are reported here and discussed in view of successful therapeutic applications. The chapter also highlights that, although PEGylation is well studied and exploited by many researchers from both academia and industry, it remains difficult to forecast its effects on a predetermined bioactive molecule. The use of PEG-enzymes in bioconversion, which is of interest in drug discovery and production, is also briefly reported.


Therapeutic Protein Certolizumab Pegol Hydrodynamic Volume Severe Combine Immunodeficiency Disease Protein PEGylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis F (2002) The origin of pegnology. Adv. Drug. Del. Rev 54: 457–458CrossRefGoogle Scholar
  2. 2.
    Working PK, Newman S S, Johnson J, Cornacoff JB (1997) Safety of poly(ethylene glycol) derivatives. In: Harris JM, Zalipsky S (eds): Poly(ethylene glycol) Chemistry and Biological Applications. ACS Books, Washington, 45–54CrossRefGoogle Scholar
  3. 3.
    Von Spect BH, Seinfeld H, Brendel W (1973) Polyvinylpyrrolidone as a soluble carrier of proteins. Physiol Chem 354: 1659–1660Google Scholar
  4. 4.
    Ranucci E, Spagnoli G, Sartore L, Bigotti P, Schiavon O, Caliceti P, Veronese FM (1995) Synthesis and molecular weight characterization of end functionalized poly(N-vinylpyrrolidone) oligomers. Macrom. Chem. Phys 196: 763–774CrossRefGoogle Scholar
  5. 5.
    Schiavon O, Caliceti P, Ferruti P, Veronese FM (2000) Therapeutic proteins: a comparison of chemical and biological properties of uricase conjugated to linear or branched poly(ethylene glycol) and poly(N-acryloylmorpholine). Farmaco 55: 264–269CrossRefPubMedGoogle Scholar
  6. 6.
    Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev 46: 169–185CrossRefPubMedGoogle Scholar
  7. 7.
    Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polymer Sci 32: 93–146CrossRefGoogle Scholar
  8. 9.
    Gaertner FC, Luxenhofer R, Blechert B, Jordan R, Essler M (2007) Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s. J. Contr. Rel. 119: 291–300CrossRefGoogle Scholar
  9. 10.
    Mero A, Pasut G, Dalla Via L, Fijten MWM, Schubert US, Hoogenboom R, Veronese FM (2008) Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: Suitable alternatives to PEG-conjugates? J. Contr. Rel 125: 87–95CrossRefGoogle Scholar
  10. 11.
    Torchilin VP, Mazaev AV, Voronkov I (1982) The use of immobilised streptokinase for the therapy of thromboses. Ther. Arch 54: 21–28Google Scholar
  11. 12.
    Davis BG, Lloyd RC, Jones JB (1998) Controlled site-selective glycosylation of proteins by a combined sitedirected mutagenesis and chemical modification approach. J. Org. Chem 63: 9614–9615CrossRefGoogle Scholar
  12. 13.
    Hang HC, Bertozzi CR (2001) Chemoselective approaches to glycoprotein assembly. Ace. Chem. Res 34: 727–736CrossRefGoogle Scholar
  13. 14.
    Solá RJ, Griebenow K (2006) Chemical glycosylation: New insights on the interrelation between protein structural mobility, thermodynamic stability, and catalysis. FEBS Letters 580: 1685–1690CrossRefPubMedGoogle Scholar
  14. 15.
    Imperiali B, O’Connor SE (1999) Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr. Opin. Chem. Biol 3: 643–649CrossRefPubMedGoogle Scholar
  15. 16.
    Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J. Pharm. Sci 94: 1626–1635CrossRefPubMedGoogle Scholar
  16. 17.
    Fernandes AI, Gregoriadis G (2001) The effect of polysialylation on the immunogenicity and antigenicity of asparaginase: implication in its pharmacokinetics. Int. J. Pharm 217: 215–224CrossRefPubMedGoogle Scholar
  17. 18.
    Gregoriadis G, Jain S, Papaioannou I, Laing P (2005) Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int. J. Pharm 300: 125–130CrossRefPubMedGoogle Scholar
  18. 19.
    Wong K, Cleland LG, Poznanski MJ (1980) Enhanced anti-inflammatory effects and reduced immunogenicity of bovine liver superoxide dismutase by conjugation with homologous albumin. Agent Actions 10: 231–239CrossRefGoogle Scholar
  19. 20.
    Tao Hu, Zhiguo Su (2002) Bovine serum albumin-bovine hemoglobin conjugate as a candidate blood substitute. Biotech Lett 24: 275–278CrossRefGoogle Scholar
  20. 21.
    Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem 252: 3582–3586PubMedGoogle Scholar
  21. 22.
    Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem 252: 3578–3781PubMedGoogle Scholar
  22. 23.
    Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov 7: 21–39CrossRefPubMedGoogle Scholar
  23. 24.
    Harris MJ (ed.) (1991) Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications. Plenum Press, New YorkGoogle Scholar
  24. 25.
    Harris JM, Veronese FM (eds): (2002) Peptide and protein PEGylation. Adv. Drug Del. Rev 54: 453–610Google Scholar
  25. 26.
    Harris JM, Veronese FM (eds): (2003) Peptide and protein PEGylation II Clinical Evaluation. Adv. Drug Del. Rev 55: 1259–1350Google Scholar
  26. 27.
    Harris JM, Veronese FM (eds): (2008) Peptide and protein PEGylation III: Advances in Chemistry and Clinical Applications Adv. Drug Del. Rev 60: 1–88Google Scholar
  27. 28.
    Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv. Drug Del. Rev 54: 487–504CrossRefGoogle Scholar
  28. 29.
    Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv. Drug Deliv. Rev 60: 13–28CrossRefPubMedGoogle Scholar
  29. 30.
    DeFrees S, Wang ZG, Xing R, Scott AE, Wang J, Zopf D, Gouty DL, Sjoberg ER, Panneerselvam K, Brinkman-Van der Linden EC et al. (2006) GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 16: 833–843CrossRefPubMedGoogle Scholar
  30. 31.
    Berna M, Dalzoppo D, Pasut G, Manunta M, Izzo L, Jones AT, Duncan R, Veronese FM (2006) Novel monodisperse PEG-Dendrons as new tools for targeted drug delivery: synthesis, characterization and cellular uptake. Biomacromol 7: 146–153CrossRefGoogle Scholar
  31. 32.
    Mero A, Spolaore B, Veronese FM, Fontana A (2009) Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug Chem 20: 384–389CrossRefPubMedGoogle Scholar
  32. 33.
    Monfardini C, Schiavon O, Caliceti P, Morpurgo M, Harris JM, Veronese FM (1995) A branched monomethoxypoly(ethylene glycol) for protein modification. Bioconjug Chem 6: 62–69CrossRefPubMedGoogle Scholar
  33. 34.
    Veronese FM, Caliceti P, Schiavon O (1997) Branched and linear Poly(ethyl glycol): influence of the polymers structure on enzymological, pharmacokinetic and immunological properties of protein conjugates. J Bioac Biocomp Polym 12: 196–207Google Scholar
  34. 35.
    Foster GR (2004) Pegylated interferons: chemical and clinical differences. Aliment Pharmacol. Ther 20: 825–830CrossRefPubMedGoogle Scholar
  35. 36.
    Blick S, Curran M (2007) Certolizumab pegol. Biodrugs 21: 196–201CrossRefGoogle Scholar
  36. 37.
    Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP (2006) A targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Dis 5: 123–132CrossRefGoogle Scholar
  37. 38.
    Guiotto A, Canevari M, Pozzobon M, Moro S, Orsolini P, Veronese FM (2004) Anchimeric assistance effect on regioselective hydrolysis of branched PEGs: a mechanistic investigation. Bioorg Med Chem 12: 5031–5037CrossRefPubMedGoogle Scholar
  38. 39.
    Solá RJ, Rodríguez-Martínez JA, Griebenow K (2007) Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications. Cell Mol. Life Sci 64: 2133–2152CrossRefPubMedGoogle Scholar
  39. 40.
    Callahan W, Narhi L, Kosky A, Treuheit M (2001) Sodium chloride enhances the storage and conformational stability of BDNF and PEG-BDNF. Pharm. Res 18: 261–266CrossRefPubMedGoogle Scholar
  40. 41.
    Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat. Rev Drug Discov 4: 298–306CrossRefPubMedGoogle Scholar
  41. 42.
    Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Del. Rev 54: 531–545CrossRefGoogle Scholar
  42. 43.
    Russell TP, Deline VR, Dozier WD, Felcher GP, Agrawal G, Wool RP, Mays W (1993) Direct observation of reptation at polymer interfaces Nature 365: 235–237CrossRefGoogle Scholar
  43. 44.
    Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22: 405–417CrossRefPubMedGoogle Scholar
  44. 45.
    Kawai F (2002) Microbial degradations of polyethers. Appl. Microbiol. Biotechnol 58: 30–38CrossRefPubMedGoogle Scholar
  45. 46.
    Friman S, Egestad B, Sjövall J, Svanvik J (1993) Hepatic excretion and metabolism of polyethylene glycols and mannitol in the cat. J. Hepatol 17: 48–55CrossRefPubMedGoogle Scholar
  46. 47.
    Beranova M, Wasserbauer R, Vancurova D, Stifter M, Ocenaskova J, Mara M (1990) Effect of cytochrome P-450 inhibition and stimulation on intensity of polyethylene degradation in microsomia! fraction of mouse and rat livers. Biomaterials 11: 521–524CrossRefPubMedGoogle Scholar
  47. 48.
    Petrak K, Goddard P (1989) Transport of macromolecules across the capillary walls. Adv. Drug Del. Rev 3: 191–214CrossRefGoogle Scholar
  48. 49.
    Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci 83: 601–606CrossRefPubMedGoogle Scholar
  49. 50.
    Yamaoka T, Tabata Y, Ikada Y (1995) Fate of water-soluble polymers administered via different routes. J. Pharm. Sci 84: 349–354CrossRefPubMedGoogle Scholar
  50. 51.
    Hamidi M, Azadi A, Rafiei P (2006) Pharmacokinetic consequences of pegylation. Drug Delivery 13: 399–409CrossRefPubMedGoogle Scholar
  51. 52.
    Manjula BN, Tsai A, Upadhya R, Perumalsamy K, Smith PK, Malavalli A, Vandegriff K, Winslow RM, Intaglietta M, Prabhakaran M et al. (2003) Site-specific PEGylation of hemoglobin at Cys-93: correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain. Bioconj. Chem 14: 464–472CrossRefGoogle Scholar
  52. 53.
    Fee CJ, Van Alstine JM (2004) Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGy lated proteins. Bioconj. Chem 15: 1304–1313CrossRefGoogle Scholar
  53. 54.
    Fee CJ (2007) Size comparison between proteins PEGylated with branched and linear polyfethylene glycol) molecules. Biotechnol. Bioeng 98: 725–731CrossRefPubMedGoogle Scholar
  54. 55.
    Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung WJ, Porter JE, Ehrlich GK, Pan W, Xu ZX, Modi MW (2001) Rational design of apotent, long-lasting form of interferon: a40 kDa branched polyethylene glycol-conjugated interferon −2a for the treatment of hepatitis C. Bioconj. Chem 12: 195–202CrossRefGoogle Scholar
  55. 56.
    Wang YS, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Delivery Rev 54: 547–570CrossRefGoogle Scholar
  56. 57.
    Cox GN, Rosendahl MS, Chlipala EA, Smith DJ, Carlson SJ, Doherty DHA (2007) Long-acting, mono-PEGylated human growth hormone analog is a potent stimulator of weight gain and bone growth in hypophysectomized rats. Endocrinology 4: 1590–1597Google Scholar
  57. 58.
    Clark R, Olson K, Fuh G, Marian M, Mortensen D, Teshima G, Chang S, Chu H, Mukku V, Canova-Davis E (1996) Long-acting growth hormones produced by conjugation with polyethylene glycol. J. Biol. Chem 271: 21969–21977CrossRefPubMedGoogle Scholar
  58. 59.
    Long DL, Doherty DH, Eisenberg SP, Smith DJ, Rosendahl MS, Christensen KR, Edwards DP, Chlipala EA, Cox GN (2006) Design of homogeneous, monopegylated erythropoietin analogs with preserved in vitro bioactivity. Experimental Hematology 34: 697–704CrossRefPubMedGoogle Scholar
  59. 60.
    Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, Zhao H, Peng P, Wu D, Zhang Z et al. (2006) Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug. Chem 17: 618–630CrossRefPubMedGoogle Scholar
  60. 61.
    Bowen S, Tare N, Yamasaki T, Okabe M, Horii I, Eliason JF (1999) Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony-stimulating factor mutein. Experimental Hematology 27: 425–432CrossRefPubMedGoogle Scholar
  61. 62.
    Gaertner HF, Puigserver AJ (1992) Increased activity and stability of poly(ethylene glycol)-modified trypsin. Enzyme Micro. Technol 14: 150–155CrossRefGoogle Scholar
  62. 63.
    Federico R, Cona A, Caliceti P, Veronese FM (2006) Histaminase PEGylation: Preparation and characterization of a new bioconjugate for therapeutic application. J. Contr. Rel 115: 168–174CrossRefGoogle Scholar
  63. 64.
    Veronese FM, Caliceti P, Pastorino A, Schiavon O, Sartore L, Banci L, Scolaro LM (1989) Preparation, physico-chemical and pharmacokinetic characterization of monomethoxypoly(ethylene glycol)-derivatized superoxide dismutase. Journal of Contr. Rel 10: 145–154CrossRefGoogle Scholar
  64. 65.
    Lee SH, Lee S, Youn YS, Na DH, Chae SY, Byun Y, Lee KC (2005) Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like peptide-1. Bioconjug. Chem 16: 377–382CrossRefPubMedGoogle Scholar
  65. 66.
    Fuertges F, Abuchowski A (1990) The clinical efficacy of poly (ethylene glycol)-modified proteins. J. Control Rel 11: 139–148CrossRefGoogle Scholar
  66. 67.
    Youn YS, Jeon JE, Chae SY, Lee S, Lee KC (2008) PEGylation improves the hypoglycaemic efficacy of intranasally administered glucagons-like peptide-1 in type 2 diabetic db/db mice. Diabetes Obes. MeTab. 10: 343–346CrossRefPubMedGoogle Scholar
  67. 68.
    He H, Murby S, Warhurst G, Gifford L, Walker D, Ayrton J, Eastmond R, Rowland M (1998) Species differences in size discrimination in the paracellular pathway reflected by oral bioavailability of Poly(ethylene glycol) and D-peptides. J. Pharm. Sci 87: 626–633CrossRefPubMedGoogle Scholar
  68. 69.
    Fishburn CS (2008) The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J. Pharm. Sci 97: 4167–4183CrossRefPubMedGoogle Scholar
  69. 70.
    Filpula D, Zhao H (2008) Releasable PEGylation of proteins with customized linkers. Adv. Drug Deliv. Rev 60: 29–49CrossRefPubMedGoogle Scholar
  70. 71.
    De Groot AS, Scott D (2007) Immunogenicity of protein therapeutics. Trends in Immunology 28: 482–490CrossRefPubMedGoogle Scholar
  71. 72.
    Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharmaceut. Res 21: 897–903CrossRefGoogle Scholar
  72. 73.
    Hermeling S, Schellekens H, Maas C, Gebbink MF, Crommelin DJ, Jiskoot W (2006) Antibody response to aggregated human interferon alpha2b in wild-type and transgenic immune tolerant mice depends on type and level of aggregation. J. Pharm. Sci 95: 1084–1096CrossRefPubMedGoogle Scholar
  73. 74.
    Schellekens H (2005) Factors influencing the immunogenicity of therapeutic proteins. Nephrol. Dial. Transplant 20: 3–9Google Scholar
  74. 75.
    Wang QC, Pai LH, Debinski W, FitzGerald DJ, Pastan I (1993) Polyethylene glycol-modified chimeric toxin composed of transforming growth factor alpha and Pseudomonas exotoxin. Cancer Res 53: 4588–4594PubMedGoogle Scholar
  75. 76.
    Filpula D, Zhao H (2008) Releasable PEGylation of proteins with customized linkers. Adv. Drug Deliv. Rev 60: 29–49CrossRefPubMedGoogle Scholar
  76. 77.
    Tsutsumi Y, Onda M, Nagata S, Lee B, Kreitman RJ, Pastan I (2000) Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc. Natl. Acad. Sci 97: 8548–8553CrossRefPubMedGoogle Scholar
  77. 78.
    Bouvier M, Wiley DC (1996) Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules. Proc. Natl. Acad. Sci. USA 93: 4583–4588CrossRefPubMedGoogle Scholar
  78. 79.
    Roseng L, Tolleshaug H, Berg T (1992) Uptake, intracellular transport, and degradation of polyethylene glycol-modified asialofetuin in hepatocytes. J. Biol. Chem 267: 22987–22993PubMedGoogle Scholar
  79. 80.
    Rajan RS, Li T, Aras M, Sloey C, Sutherland W, Arai H, Briddell R, Kinstler O, Lueras AM, Zhang Y et al. (2006) Modulation of protein aggregation by polyethylene glycol conjugation: GCSF as a case study. Protein Sci 15: 1063–1075CrossRefPubMedGoogle Scholar
  80. 81.
    Veronese FM, Mero A, Caboi F, Sergi M, Marongiu C, Pasut G (2007) Site-specific pegylation of G-CSF by reversible denaturation. Bioconjug. Chem 18: 1824–1830CrossRefPubMedGoogle Scholar
  81. 82.
    Schellekens H (2002) Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin. Ther 24: 1720–1740CrossRefPubMedGoogle Scholar
  82. 83.
    Kamisaki Y, Wada H, Yagura T, Matsushima A, Inada Y (1981) Reduction in immunogenicity and clearance rate of Escherichia coli L-asparaginase by modification with monomethoxypolyethylene glycol. J. Pharmacol. Exp. Ther 216: 410–414PubMedGoogle Scholar
  83. 84.
    Yang Z, Wang J, Lu Q, Xu J, Kobayashi Y, Takakura T, Takimoto A, Yoshioka T, Lian C, Chen C et al. (2004) PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res 64: 6673–6678CrossRefPubMedGoogle Scholar
  84. 85.
    Walsh S, Shah A, Mond J (2003) Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrobial Agents And Chemotherapy 47: 554–558CrossRefPubMedGoogle Scholar
  85. 86.
    An Q, Lei Y, Jia N, Zhang X, Bai Y, Yi J, Chen R, Xia A, Yang J, Wei S (2007) Effect of site-directed PEGylation of trichosanthin on its biological activity, immunogenicity, and pharmacokinetics. Biomolec. Engineer 24: 643–649CrossRefGoogle Scholar
  86. 87.
    Tillmann HC, Kuhn B, Kränzlin B, Sadick M, Gross J, Gretz N, Pill J (2006) Efficacy and immunogenicity of novel erythropoietic agents and conventional rhEPO in rats with renal insufficiency. Kidney International 69: 60–67CrossRefPubMedGoogle Scholar
  87. 88.
    Inada Y, Takahashi K, Yoshimoto T, Ajima A, Matsushima A, Saito Y (1986) Application of polyethylene glycol-modified enzymes in biotechnological processes: Organic solvent-soluble enzymes. Trends in Biotechnol 4: 190–194CrossRefGoogle Scholar
  88. 89.
    Secundo G, Ottlina G, Carrea G (2008) Preparation and properties in organic solvents of noncovalent PEG-enzyme complexes. Methods in Biotechnology 15: 77–81Google Scholar
  89. 90.
    Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angewand. Chem. Intern. Ed 39: 2226–2254CrossRefGoogle Scholar
  90. 91.
    Yamamoto Y, Kise H (1993) Catalysis of enzyme aggregates in organic solvents: An attempt at evaluation of intrinsic activity of proteases in ethanol. Biotechnol. Lett 15: 647–652CrossRefGoogle Scholar
  91. 92.
    Hernáiz M J, Sánchez-Montero JM, Sinisterra JV (1997) Influence of the nature of modifier in the enzymatic activity of chemical modified semipurified lipase from Candida rugosa. Biotechnol. Bioeng 55: 252–260CrossRefPubMedGoogle Scholar
  92. 93.
    Jene Q, Pearson JC, Lowe CR (1997) Surfactant modified enzymes: solubility and activity of surfactant-modified catalase in organic solvents. Enzyme Microb. Technol 20: 69–74CrossRefGoogle Scholar
  93. 94.
    DeSantis G, Jones JB (1999) Chemical modification of enzymes for enhanced functionality. Current Opinion in Biotechnology 10: 324–330CrossRefPubMedGoogle Scholar
  94. 95.
    Castillo B, Sola R, Ferrer A, Barletta G, Griebenow K (2008) Effect of PEG modification on subtilisin carlsberg activity, enantioselectivity, and structural dynamics in 1,4-dioxane. Biotechnology and Bioeng 99: 9–17CrossRefGoogle Scholar
  95. 96.
    Veronese FM, Mammuccari C, Schiavon F, Schiavon O, Lora S, Secundo F, Chilin A, Guiotto A (2000) PEGylated enzyme entrapped in poly(vinyl alcohol) hydrogel for biocatalytic application. Il Farmaco 56: 541–547CrossRefGoogle Scholar
  96. 97.
    Wang M, Basu A, Palm T, Hua J, Youngster S, Hwang L, Liu HC, Li X, Peng P, Zhang Y et al. (2006) Engineering an arginine catabolizing bioconjugate: Biochemical and pharmacological characterization of PEGylated derivatives of arginine deiminase from Mycoplasma arthritidis. Bioconjug. Chem 17: 1447–1459CrossRefPubMedGoogle Scholar
  97. 98.
    Sundy JS, Ganson NJ, Kelly SJ, Scarlett EL, Rehing CD, Huang W, Hershfield MS (2007) Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum 56: 1021–1028CrossRefPubMedGoogle Scholar
  98. 99.
    Tanaka H, Satake-Ishikawa R, Ishikawa M, Matsuki S, Asano K (1991) Pharmacokinetics of recombinant human granulocyte colony-stimulating factor conjugated to polyethylene glycol in rats. Cancer Res 51: 3710–3714PubMedGoogle Scholar
  99. 100.
    Baker DP, Lin EY, Lin K, Pellegrini M, Petter RC, Chen LL, Arduini RM, Brickelmaier M, Wen D, Hess DM et al. (2006) N-terminally PEGylated human interferon-beta-la with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. Bioconjug. Chem 17: 179–188CrossRefPubMedGoogle Scholar
  100. 101.
    Tsutsumi Y, Kihira T, Tsunoda S, Okada N, Kaneda Y, Ohsugi Y, Miyake M, Nakagawa S, Mayumi T (1995) Polyethylene glycol modification of interleukin-6 enhances its thrombopoietic activity. J. Control Release 33: 447–451CrossRefGoogle Scholar
  101. 102.
    Yamamoto Y, Tsutsumi Y, Yoshioka Y, Nishibata T, Kobayashi K, Okamoto T, Mukai Y, Shimizu T, Nakagawa S, Nagata S (2003) Site-specific PEGylation of a lysine-deficient TNF-alpha with full bioactivity. Nat. Biotechnol 31:31Google Scholar
  102. 103.
    Youn YS, Jung JY, Oh SH, Yoo SD, Lee KC (2006) Improved intestinal delivery of salmon calcitonin by Lysl8-amine specific PEGylation: stability, permeability, pharmacokinetic behavior and in vivo hypocalcemie efficacy. J. Control Release 114: 334–342CrossRefPubMedGoogle Scholar
  103. 104.
    Shin BS, Jung JH, Lee KC, Yoo SD (2004) Nasal absorption and pharmacokinetic disposition of salmon calcitonin modified with low molecular weight polyethylene glycol. Chem. Pharm. Bull 52: 957–960CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Francesco M. Veronese
    • 1
  • Anna Mero
    • 1
  • Gianfranco Pasut
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of PaduaPaduaItaly

Personalised recommendations