Advertisement

Certolizumab pegol: a PEGylated anti-tumour necrosis factor alpha biological agent

  • Andrew M. Nesbitt
  • Sue Stephens
  • Elliot K. Chartash
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

Tumour necrosis factor (TNF)α is a proinflammatory cytokine involved in systemic inflammation that mediates chronic inflammatory diseases such as rheumatoid arthritis (RA), Crohn’s disease (CD) and psoriasis. Recognition of TNFα as a primary mediator of inflammatory disease has driven the development of monoclonal antibodies (mAbs) against TNFα as potential novel therapies for these disorders. Certolizumab pegol is a novel, polyethylene glycol (PEG)-conjugated, humanised, antigen-binding fragment (Fab’) of an anti-TNFα mAb that does not mediate apoptosis or neutrophil degranula- tion. Preclinical studies have shown excellent bioavailability, with preferential distribution and retention in inflamed tissue, which could be due to the low diffusion rate of PEGylated molecules and/or the lack of an Fc, which prevents FcRn-mediated transport. Pharmacokinetics are linear and predictable. Certolizumab pegol is a potentially valuable new treatment option for several inflammatory diseases. It has shown promising efficacy and tolerability results in Phase II and III trials for RA, CD and psoriasis.

Keywords

Certolizumab Pegol Tumour Necrosis Factor Receptor Type Subcutaneous Certolizumab Pegol Patient Receive Certolizumab Pegol Certolizumab Pegol Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214: 149–160CrossRefPubMedGoogle Scholar
  2. 2.
    Kolb WP, Granger GA (1968) Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin. Proc Natl Acad Sci U S A 61: 1250–1255CrossRefPubMedGoogle Scholar
  3. 3.
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 3666–3670CrossRefPubMedGoogle Scholar
  4. 4.
    Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, Mathison J, Ulevitch R, Cerami A (1985) Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316: 552–554CrossRefPubMedGoogle Scholar
  5. 5.
    Beutler B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229: 869–871CrossRefPubMedGoogle Scholar
  6. 6.
    Chatzantoni K, Mouzaki A (2006) Anti-TNF-α antibody therapies in autoimmune diseases. Curr Top Med Chem 6: 1707–1714CrossRefPubMedGoogle Scholar
  7. 7.
    Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3: 745–756CrossRefPubMedGoogle Scholar
  8. 8.
    Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334: 1717–1725CrossRefPubMedGoogle Scholar
  9. 9.
    Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11: 372–377CrossRefPubMedGoogle Scholar
  10. 10.
    Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-к B: its role in health and disease. J Mol Med 82: 434–488CrossRefPubMedGoogle Scholar
  11. 11.
    Grell M, Becke FM, Wajant H, Mannel DN, Scheurich P (1998) TNF receptor type 2 mediates thymocyte proliferation independently of TNF receptor type 1. Eur J Immunol 28: 257–263CrossRefPubMedGoogle Scholar
  12. 12.
    Haridas V, Darnay BG, Natarajan K, Heller R, Aggarwal BB (1998) Overexpression of the p80 TNF receptor leads to TNF-dependent apoptosis, nuclear factor-кB activation, and c-Jun kinase activation.J Immunol 160: 3152–3162PubMedGoogle Scholar
  13. 13.
    Feldmann M, Brennan FM, Paleolog E, Cope A, Taylor P, Williams R, Woody J, Maini RN (2004) Anti-TNFalpha therapy of rheumatoid arthritis: what can we learn about chronic disease? Novartis Eound Symp 256: 53–69CrossRefGoogle Scholar
  14. 14.
    Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344: 907–916CrossRefPubMedGoogle Scholar
  15. 15.
    Paleolog EM, Hunt M, Elliott MJ, Feldmann M, Maini RN, Woody JN (1996) Deactivation of vascular endothelium by monoclonal anti-tumor necrosis factor alpha antibody in rheumatoid arthritis. Arthritis Rheum 39: 1082–1091CrossRefPubMedGoogle Scholar
  16. 16.
    Tak PP, Taylor PC, Breedveld FC, Smeets TJ, Daha MR, Kluin PM, Meinders AE, Maini RN (1996) Decrease in cellularity and expression of adhesion molecules by anti-tumor necrosis factor alpha monoclonal antibody treatment in patients with rheumatoid arthritis. Arthritis Rheum 39: 1077–1081CrossRefPubMedGoogle Scholar
  17. 17.
    Goldring SR, Gravallese EM (2002) Pathogenesis of bone lesions in rheumatoid arthritis. Curr Rheumatol Rep 4: 226–231CrossRefPubMedGoogle Scholar
  18. 18.
    Dayer JM, Beutler B, Cerami A (1985) Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med 162: 2163–2168CrossRefPubMedGoogle Scholar
  19. 19.
    De Hertogh G, Aerssens J, Geboes KP, Geboes K (2008) World J Gastroenterol 14: 845–852CrossRefPubMedGoogle Scholar
  20. 20.
    Loftus EV Jr, Schoenfeld P, Sandborn WJ (2002) The epidemiology and natural history of Crohn’s disease in population-based patient cohorts from North America: a systematic review. Aliment Pharmacol Ther 16:51–60CrossRefPubMedGoogle Scholar
  21. 21.
    Schwartz DA, Pemberton JH, Sandborn WJ (2001) Diagnosis and treatment of perianal fistulas in Crohn’s disease. Ann Intern Med 135: 906–918PubMedGoogle Scholar
  22. 22.
    Hanauer SB (2006) Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 12(Suppl 1): S3–S9CrossRefPubMedGoogle Scholar
  23. 23.
    Reinecker HC, Steffen M, Witthoeft T, Pflueger l, Schreiber S, MacDermott RP, Raedler A (1993) Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1β by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol 94: 174–181PubMedCrossRefGoogle Scholar
  24. 24.
    Boirivant M, Marini M, Di Felice G, Pronio AM, Montesani C, Tersigni R, Strober W (1999) Lamina propria T cells in Crohn’s disease and other gastrointestinal inflammation show defective CD2 pathway-induced apoptosis. Gastroenterology 116: 557–565CrossRefPubMedGoogle Scholar
  25. 25.
    Ina K, Itoh J, Fukushima K, Kusugami K, Yamaguchi T, Kyokane K, Imada A, Binion DG, Musso A, West GA et al. (1999) Resistance of Crohn’s disease T cells to multiple apoptotic signals is associated with a Bcl-2/Bax mucosal imbalance. J Immunol 163: 1081–1090PubMedGoogle Scholar
  26. 26.
    Doering J, Begue B, Lentze MJ, Rieux-Laucat F, Goulet O, Schmitz J, Cerf-bensussan N, Ruemmele FM (2004) Induction of T lymphocyte apoptosis by sulphasalazine in patients with Crohn’s disease. Gut 53: 1632–1638CrossRefPubMedGoogle Scholar
  27. 27.
    Saklatvala J (1986) Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature 322: 547–549CrossRefPubMedGoogle Scholar
  28. 28.
    Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G (1991) Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10:4025–4031PubMedGoogle Scholar
  29. 29.
    Piguet PF, Grau GE, Vesin C, Loetscher H, Gentz R, Lesslauer W (1992) Evolution of collagen arthritis in mice is arrested by treatment with anti-tumour necrosis factor (TNF) antibody or a recombinant soluble TNF receptor. Immunology 77: 510–514PubMedGoogle Scholar
  30. 30.
    Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA (1992) Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci U S A 89: 7375–7379CrossRefPubMedGoogle Scholar
  31. 31.
    Williams RO, Feldmann M, Maini RN (1992) Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci U S A 89: 9784–9788CrossRefPubMedGoogle Scholar
  32. 32.
    Gelfand JM, Weinstein R, Porter SB, Neimann AL, Berlin JA, Margolis DJ (2005) Prevalence and treatment of psoriasis in the United Kingdom: a population-based study. Arch Dermatol 141: 1537–1541CrossRefPubMedGoogle Scholar
  33. 33.
    Zachariae H (2003) Prevalence of joint disease in patients with psoriasis: implications for therapy. Am J Clin Dermatol 4: 441–447CrossRefPubMedGoogle Scholar
  34. 34.
    Gudjonsson JE, Johnston A, Sigmundsdottir H, Valdimarsson H (2004) Immunopathogenic mechanisms in psoriasis. Clin Exp Immunol 135: 1–8CrossRefPubMedGoogle Scholar
  35. 35.
    Veale DJ, Ritchlin C, FitzGerald O (2005) Immunopathology of psoriasis and psoriatic arthritis. Rheum Dis 64(Suppl 2): ii26–ii29CrossRefGoogle Scholar
  36. 36.
    Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO (2004) Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med 199: 731–736CrossRefPubMedGoogle Scholar
  37. 37.
    Goldstein G, Fuccello AJ, Norman DJ, Shield CF 3rd, Colvin RB, Cosimi AB (1986) OKT3 monoclonal antibody plasma levels during therapy and the subsequent development of host antibodies to OKT3. Transplantation 42: 507–511CrossRefPubMedGoogle Scholar
  38. 38.
    Bach JF, Chatenoud L (1987) Immunologic monitoring of orthoclone OKT3-treated patients: the problem of antimonoclonal immune response. Transplant Proc 19(2 Suppl 1): 17–20PubMedGoogle Scholar
  39. 39.
    Knight DM, Wagner C, Jordan R, McAleer MF, DeRita R, Fass DN, Coller BS, Weisman HF, Ghrayeb J (1995) The immunogenicity of the 7E3 murine monoclonal Fab antibody fragment variable region is dramatically reduced in humans by substitution of human for murine constant regions. Mol Immunol 32: 1271–1281CrossRefPubMedGoogle Scholar
  40. 40.
    Wong M, Ziring D, Korin Y, Desai S, Kim S, Lin J, Gjertson D, Braun J, Reed E, Singh RR (2008) TNFα blockade in human diseases: mechanisms and future directions. Clin Immunol 126: 121–136CrossRefPubMedGoogle Scholar
  41. 41.
    Harriman G, Harper LK, Schaible TF (1999) Summary of clinical trials in rheumatoid arthritis using infliximab, an anti-TNFα treatment. Ann Rheum Dis 58(Suppl 1): i61–i64CrossRefPubMedGoogle Scholar
  42. 42.
    Kuek A, Hazleman BL, Ostör AJ (2007) Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution. Postgrad Med J 83: 251–260CrossRefPubMedGoogle Scholar
  43. 43.
    Barteids GM, Wijbrandts CA, Nurmohamed MT, Stapel S, Lems WF, Aarden L, Dijkmans BA, Tak PP, Wolbink GJ (2007) Clinical response to adalimumab: relationship to anti-adalimumab antibodies and serum adalimumab concentrations in rheumatoid arthritis. Ann Rheum Dis 66: 921–926CrossRefGoogle Scholar
  44. 44.
    West RL, Zelinkova Z, Wolbink GJ, Kuipers EJ, Stokkers PCF, van der Woude CJ (2008) Does immunogenicity play a role in adalimumab treatment for Crohn’s disease? J Crohn’s Colitis Suppl 2: 17 (P039)Google Scholar
  45. 45.
    Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWoody KL, Schaible TF, Rutgeerts PJ (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med 337: 1029–1035CrossRefPubMedGoogle Scholar
  46. 46.
    Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, Rachmilewitz D, Wolf DC, Olson A, Bao W et al; ACCENT I Study Group (2002) Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 359: 1541–1549CrossRefPubMedGoogle Scholar
  47. 47.
    Present DH, Rutgeerts P, Targan S, Hanauer SB, Mayer L, van Hogezand RA, Podolsky DK, Sands BE, Braakman T, DeWoody KL et al. (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 340: 1398–1405CrossRefPubMedGoogle Scholar
  48. 48.
    Rutgeerts P, D’Haens G, Targan S, Vasiliauskas E, Hanauer SB, Present DH, Mayer L, Van Hogezand RA, Braakman T, DeWoody KL et al. (1999) Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology 117: 761–769CrossRefPubMedGoogle Scholar
  49. 49.
    Sands BE, Anderson FH, Bernstein CN, Chey WY, Feagan BG, Fedorak RN, Kamm MA, Korzenik JR, Lashner BA, Onken JE et al. (2004) Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med 350: 876–885CrossRefPubMedGoogle Scholar
  50. 50.
    Maini RN, Breedveld FC, Kalden JR, Smolen JS, Furst D, Weisman MH, St Clair EW, Keenan GF, van der Heijde D, Marsters PA et al; Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group (2004) Sustained improvement over two years in physical function, structural damage, and signs and symptoms among patients with rheumatoid arthritis treated with infliximab and methotrexate. Arthritis Rheum 50: 1051–1065Google Scholar
  51. 51.
    St Clair EW, van der Heijde DM, Smolen JS, Maini RN, Bathon JM, Emery P, Keystone E, Schiff M, Kalden JR, Wang B et al; Active-Controlled Study of Patients Receiving Infliximab for the Treatment of Rheumatoid Arthritis of Early Onset Study Group (2004) Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomised, controlled trial. Arthritis Rheum 50: 3432–3443Google Scholar
  52. 52.
    Gottlieb AB, Evans R, Li S, Dooley LT, Guzzo CA, Baker D, Bala M, Marano CW, Menter A (2004) Infliximab induction therapy for patients with severe plaque-type psoriasis: a randomised, double-blind, placebo-controlled trial. J Am Acad Dermatol 51: 534–542CrossRefPubMedGoogle Scholar
  53. 53.
    Reich K, Nestle FO, Papp K, Ortonne JP, Evans R, Guzzo C, Li S, Dooley LT, Griffiths CE; EXPRESS study investigators (2005) Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 366: 1367–1374Google Scholar
  54. 54.
    Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, Macintosh D, Panaccione R, Wolf D, Pollack P (2006) Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology 130: 323–333CrossRefPubMedGoogle Scholar
  55. 55.
    Sandborn WJ, Hanauer SB, Rutgeerts P, Fedorak RN, Lukas M, Macintosh DG, Panaccione R, Wolf D, Kent JD, Bittle B et al. (2007a) Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut 56: 1232–1239CrossRefPubMedGoogle Scholar
  56. 56.
    Colombel JF, Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Panaccione R, Schreiber S, Byczkowski D, Li J, Kent JD et al. (2007) Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology 132: 52–65CrossRefPubMedGoogle Scholar
  57. 57.
    Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Colombel JF, Panaccione R, D’Haens G, Li J, Rosenfeld MR, Kent JD et al. (2007b) Adalimumab Induction Therapy for Crohn’s Disease Previously Treated with Infliximab: A Randomized Trial. Ann Intern Med 146: 829–838PubMedGoogle Scholar
  58. 58.
    Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK (2003) Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48: 35–45CrossRefPubMedGoogle Scholar
  59. 59.
    Keystone EC, Kavanaugh AF, Sharp JT, Tannenbaum H, Hua Y, Teoh LS, Fischkoff SA, Chartash EK (2004) Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum 50: 1400–1411CrossRefPubMedGoogle Scholar
  60. 60.
    Menter A, Tyring SK, Gordon K, Kimball AB, Leonardi CL, Langley RG, Strober BE, Kaul M, Gu Y, Okun M et al. (2008) Adalimumab therapy for moderate to severe psoriasis: A randomised, controlled phase III trial. J Am Acad Dermatol 58: 106–115CrossRefPubMedGoogle Scholar
  61. 61.
    Weir N, Athwal D, Brown D, Foulkes R, Kollias G, Nesbitt A, Popplewell A, Spitali M, Stephens S (2006) A new generation of high-affinity humanized PEGylated Fab’ fragment anti-tumor necrosis factor-α monoclonal antibodies. Therapy 3: 535–545Google Scholar
  62. 62.
    Nesbitt A, Fossati G, Bergin M, Stephens P, Stephens S, Foulkes R, Brown D, Robinson M, Bourne T (2007) Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis 13: 1323–1332CrossRefPubMedGoogle Scholar
  63. 63.
    Palframan R, Vugler A, Moore A, Nesbitt A, Foulkes R (2008) Differing distribution of certolizumab pegol, adalimumab and infliximab in the inflamed paws of mice with collagen-induced arthritis compared with normal mice. Ann Rheum Dis 67(Suppl II): 595Google Scholar
  64. 64.
    Henry AJ, Kennedy J, Fossati G, Nesbitt AM (2007) Stoichiometry of binding to and complex formation with TNF by certolizumab pegol, adalimumab, and infliximab, and the biologic effects of these complexes. Gastroenterology 132 (4, Suppl 2): A231Google Scholar
  65. 65.
    Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 54: 531–545CrossRefPubMedGoogle Scholar
  66. 66.
    Smith B, Ceska T, Henry A, Heads J, Turner A, King M, Krebs M, Heywood S, O’Hara J, Nesbitt A (2008) Detailing the novel structure of the biopharmaceutical certolizumab pegol. J Crohn’s Colitis Suppl 2: 50CrossRefGoogle Scholar
  67. 67.
    Gramlick G, Fossati G, Nesbitt A (2006) Neutralization of soluble and membrane tumor necrosis factor-α (TNF-α) by infliximab, adalimumab, or certolizumab pegol using P55 or P75 TNF-α receptor-specific bioassays. Gastroenterology 130(Suppl 2): A697Google Scholar
  68. 68.
    Peppelenbosch MP, van Deventer SJ (2004) T cell apoptosis and inflammatory bowel disease. Gut 53: 1556–1558CrossRefPubMedGoogle Scholar
  69. 69.
    Atreya R, Bartsch B, Galle PR, Neurath MF (2008) Anti-TNF agents target the mucosal intercellular signaling in inflammatory bowel diseases: A common molecular mechanism of action of clinically effective anti-TNF agents. Gastroenterology 134(4, Suppl 1): A644 (W1153)Google Scholar
  70. 70.
    Balazovich KJ, Suchard SJ, Remick DG, Boxer LA (1996) Tumor necrosis factor-alpha and FMLP receptors are functionally linked during FMLP-stimulated activation of adherent human neutrophils. Blood 88: 690–696PubMedGoogle Scholar
  71. 71.
    Wang D, Miller SC, Sima M, Parker D, Buswell H, Goodrich KC, Kopecková P, Kopecek J (2004) The arthrotropism of macromolecules in adjuvant-induced arthritis rat model: a preliminary study. Pharm Res 21: 1741–1749CrossRefPubMedGoogle Scholar
  72. 72.
    Baert F, Noman M, Vermeire S, Van Assche G, D’Haens G, Carbonez A, Rutgeerts P (2003) Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 348: 601–608CrossRefPubMedGoogle Scholar
  73. 73.
    Nesbitt A, Brown D, Stephens S, Foulkes R (2006) Placental transfer and accumulation in milk of the anti-TNF antibody TNF in rats: immunoglobulin G1 versus pegylated Fab. Am J Gastroenterol 101: S438Google Scholar
  74. 74.
    Webster R, Didier E, Harris P, Siegel N, Stadler J, Tilbury L, Smith D (2007) PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos 35: 9–16CrossRefPubMedGoogle Scholar
  75. 75.
    Parton T, King L, van Asperen J, Hey wood S, Nesbitt A (2008) Investigation of the distribution and elimination of the PEG component of certolizumab pegol in rats. J Crohn’s Colitis Suppl 2: 26CrossRefGoogle Scholar
  76. 76.
    Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83: 601–606CrossRefPubMedGoogle Scholar
  77. 77.
    Baker M, Stringer F, Stephens S (2006) Pharmacokinetic properties of the anti-TNF agent certolizumab pegol. Gut 55 (Suppl V): A122Google Scholar
  78. 78.
    CIMZIA Prescribing Information. 2008. Available at: http://www.fda.gov/cder/foi/label/2008/ 125160s0001b1.pdf Accessed: 09 July 2008Google Scholar
  79. 79.
    Pigeolet E, Jacqmin ML, Sargentini-Maier ML, Parker G, Stockis A (2007) Population pharmacokinetics of certolizumab pegol. Clin Pharmacol Ther 81 (Suppl 1): S72Google Scholar
  80. 80.
    Vetterlein O, Kopotsha T, Nesbitt A, Stephens S (2008) No antibodies to PEG detected in patients treated with certolizumab pegol. Ann Rheum Dis 67(Suppl II): 326Google Scholar
  81. 81.
    Vetterlein O, Kopotsha T, Nesbitt A, Brown D, Stephens S (2007) In patients with rheumatoid arthritis treated with the anti-TNF certolizumab pegol or infliximab, antibodies produced do not cross react with other agents. Ann Rheum Dis 66(Suppl II): 161Google Scholar
  82. 82.
    Winter TA, Wright J, Ghosh S, Jahnsen J, Innes A, Round P (2004) Intravenous CDP870, a PEGylated Fab’ fragment of a humanized antitumour necrosis factor antibody, in patients with moderate-to-severe Crohn’s disease: an exploratory study. Aliment Pharmacol Ther 20: 1337–1346CrossRefPubMedGoogle Scholar
  83. 83.
    Schreiber S, Rutgeerts P, Fedorak RN, Khaliq-Kareemi M, Kamm MA, Boivin M, Bernstein CN, Staun M, Thomsen OØ, Innes A; CDP870 Crohn’s Disease Study Group (2005) A randomised, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology 129: 807–818Google Scholar
  84. 84.
    Sandborn WJ, Feagan BG, Stoinov S, Honiball PJ, Rutgeerts P, Mason D, Bloomfield R, Schreiber S; PRECISE 1 Study Investigators (2007c) Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med 357: 228–238Google Scholar
  85. 85.
    Schreiber S, Khaliq-Kareemi M, Lawrance IC, Thomsen OØ, Hanauer SB, McColm J, Bloomfield R, Sandborn WJ; PRECISE 2 Study Investigators (2007a) Maintenance therapy with certolizumab pegol for Crohn’s disease. N Engl J Med 357: 239–250Google Scholar
  86. 86.
    Schreiber S, Panes J, Mason D, Lichtenstein G, Dandborn WJ (2008) Efficacy and tolerability of certolizumab pegol are sustained over 18 months: data from PRECiSE 2 and its extension studies (PRECiSE 3 and 4). Gastroenterology 134(4, Suppl 1): A490 (T1133)Google Scholar
  87. 87.
    Schreiber S, Feagan B, Hanauer S, Rutgeerts PJ, Sandborn WJ (2007) Subcutaneous certolizumab pegol is well tolerated by patients with active Crohn’s disease: Results from two phase III studies (PRECiSE 1 and 2). J Crohn’s Colitis Suppl 1: 43Google Scholar
  88. 88.
    Choy EHS, Hazleman B, Smith M, Moss K, Lisi L, Scott DG, Patel J, Sopwith M, Isenberg DA (2002) Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomised, dose-escalating trial. Rheumatology 41: 1133–1137CrossRefPubMedGoogle Scholar
  89. 89.
    Fleischmann R, Mason D, Cohen S (2007) Efficacy and safety of certolizumab pegol monotherapy in patients with rheumatoid arthritis failing previous DMARD therapy. Ann Rheum Dis 66(Suppl II): 169Google Scholar
  90. 90.
    Fleischmann R, Keininger DL, Tahiri-Fitzgerald E, Mease P (2007) Certolizumab pegol monotherapy 400 mg every 4 weeks improves physical functioning and reduces pain in patients with rheumatoid arthritis who have previously failed DMARD therapy. Ann Rheum Dis 66(Suppl II): 170Google Scholar
  91. 91.
    Keystone E, Mason D, Combe B (2007) The anti-TNF certolizumab pegol in combination with methotrexate is significantly more effective than methotrexate alone in the treatment of patients with active rheumatoid arthritis: 1-year results from the RAPID 1 study. Ann Rheum Dis 66(Suppl II): 55Google Scholar
  92. 92.
    Smolen J, Brzezicki J, Mason D, Kavanaugh A (2007) Efficacy and safety of certolizumab pegol in combination with methotrexate (MTX) in patients with active rheumatoid arthritis despite MTX therapy: Results from the RAPID 2 study. Ann Rheum Dis 66(Suppl II): 187Google Scholar
  93. 93.
    Van der Heijde D, Strand V, Keystone E, Landewe R (2007) Inhibition of radiographic progression by lyophilized certolizumab pegol added to methotrexate in comparison with methotrexate alone in patients with rheumatoid arthritis: The RAPID 1 trial. Arthritis Rheum 56(suppl): 390–391Google Scholar
  94. 94.
    Strand V, Keininger DL, Tahiri-Fitzgerald E (2007) Certolizumab pegol results in clinically meaningful improvements in physical function and health-related quality of life in patients with active rheumatoid arthritis despite treatment with methotrexate. Arthritis Rheum 56(Suppl): 393Google Scholar
  95. 95.
    Reich K, Tasset C, Ortonne J (2007) Efficacy and safety of certolizumab pegol in patients with chronic plaque psoriasis: Preliminary results of a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 66 (Suppl II): 251Google Scholar
  96. 96.
    Shealy DJ, Visvanathan S (2008) Anti-TNF antibodies: lessons from the past, roadmap for the future. Handb Exp Pharmacol 181: 101–129CrossRefPubMedGoogle Scholar
  97. 97.
    Blick SKA, Curran MP (2007) Certolizumab pegol: in Crohn’s disease. BioDrugs 21: 195–201CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Andrew M. Nesbitt
    • 1
  • Sue Stephens
    • 2
  • Elliot K. Chartash
    • 3
  1. 1.Inflammation ResearchUCB CelltechSloughUK
  2. 2.Non-Clinical DevelopmentUCB CelltechSloughUK
  3. 3.Clinical DevelopmentUCB IncAtlantaUSA

Personalised recommendations