Skip to main content

Development of PEGylated mammalian urate oxidase as a therapy for patients with refractory gout

  • Chapter
PEGylated Protein Drugs: Basic Science and Clinical Applications

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Gout is a form of arthritis caused by inflammatory crystals of monosodium urate, which deposit in joints when the plasma concentration of uric acid chronically exceeds the limit of solubility, ∼7 mg/dL (0.42 mM). The human species is predisposed to hyperuricemia and gout by mutation of the urate oxi dase gene during evolution. Urate oxidases from various sources have been used as a model to inves tigate the effects of PEGylation in animals. More than 15 years ago we initiated a project to develop a PEGylated recombinant mammalian urate oxidase as an Orphan Drug for treating patients with refractory gout. Clinical testing of this PEG-uricase, now called pegloticase, began in 2001. Pegloticase was found to have a half-life in plasma of about two weeks, and when infused at 2–4 week intervals to rapidly correct hyperuricemia. PEGylation was effective in limiting immune recognition of the recombinant uricase protein, but antibodies to PEG develop in some patients, resulting in the rapid clearance of pegloticase and loss of efficacy. However, in many patients with refractory gout, treatment with pegloticase maintains plasma urate at well below saturating concentrations, leading to elimination of tissue urate deposits and control of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis S, Abuchowski A, Park YK, Davis FF. Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin Exp Immunol. 1981;46:649–652.

    PubMed  CAS  Google Scholar 

  2. Chen RH-L, Abuchowski A, van Es T, Palczuk NC, Davis FF. Properties of two urate oxidases modified by the covalent attachment of poly(ethylene glycol). Biochim Biophys Acta. 1981;660:293–298.

    PubMed  CAS  Google Scholar 

  3. Hershfield MS, Buckley RH, Greenberg ML, Melton AL, Schiff R, Hatem C, Kurtzberg J, Markert ML, Kobayashi RH, Kobayashi AL, Abuchowski A. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N Engl J Med. 1987;316:589–596.

    Article  PubMed  CAS  Google Scholar 

  4. Davis S, Park YK, Abuchowski A, Davis FF. Hypouricaemic effect of polyethylene glycol modified urate oxidase. Lancet. 1981;2:281–283.

    Article  PubMed  CAS  Google Scholar 

  5. Chua CC, Greenberg ML, Viau AT, Nucci M, Brenckman WD Jr, Hershfield MS. Use of polyethylene glycol-modified uricase (PEG-uricase) to treat hyperuricemia in a patient with non-Hodgkin lymphoma. Ann Int Med. 1988;109:114–1 17.

    PubMed  CAS  Google Scholar 

  6. Greenberg ML, Hershfield MS. A radiochemical-high-performance liquid chromatographic assay for urate oxidase in human plasma. Anal Biochem. 1989;176:290–293.

    Article  PubMed  CAS  Google Scholar 

  7. Keilin J. The biologic significance of uric acid and guanine excretion. Biol Rev Cambridge Phil Soc. 1959;34:265–296.

    CAS  Google Scholar 

  8. Christen P, Peacock WC, Christen AE, Wacker WEC. Urate oxidase in primate phylogenesis. Eur J Biochem. 1970;12:3–5.

    Article  PubMed  CAS  Google Scholar 

  9. Wu X, Muzny DM, Lee CC, Caskey CT. Two independent mutational events in the loss of urate oxidase. J Mol Evol. 1992;34:78–84.

    Article  PubMed  CAS  Google Scholar 

  10. Oda M, Satta Y, Takenaka O, Takahata N. Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol. 2002;19:640–653.

    PubMed  CAS  Google Scholar 

  11. Kahn K, Serfozo P, Tipton PA. Identification of the true product of the urate oxidase reaction. J Am Chem Soc. 1997;119:5435–5442.

    Article  CAS  Google Scholar 

  12. Kahn K, Tipton PA. Spectroscopic characterization of intermediates in the urate oxidase reaction. B. 1998;37:11651–11659.

    CAS  Google Scholar 

  13. Ramazzina I, Folli C, Secchi A, Berni R, Percudani R. Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat Chem Biol. 2006;2:144–148.

    Article  PubMed  CAS  Google Scholar 

  14. Fahimi HD, Reich D, Volkl A, Baumgart E. Contributions of the immunogold technique to investigation of the biology of peroxisomes. Histochem Cell Biol. 1996;106:105–114.

    Article  PubMed  CAS  Google Scholar 

  15. Conley TG, Priest DG. Purification of uricase from mammalian tissue. Preparative Biochemistry. 1979;9:197–203.

    Article  PubMed  CAS  Google Scholar 

  16. Colloc’h N, El Haji M, Bachet B, L’Hermite G, Schiltz M, Prange T, Castro B, Mornon J-P. Crystal structure of the protein drug urate oxidase-inhibitor complex at 2.05 Å resolution. Nat Struct Biol. 1997;4:947–952.

    Article  CAS  Google Scholar 

  17. Becker MA. Hyperuricemia and gout. In: Scriver CR, Beaudet al., Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease (ed 8th). New York: McGraw-Hill; 2001:2513–2535.

    Google Scholar 

  18. Terkeltaub RA. Clinical practice. Gout. N Engl J Med. 2003;349:1647–1655.

    Article  CAS  Google Scholar 

  19. Jones DP, Mahmoud H, Chesney RW. Tumor lysis syndrome: pathogenesis and management. Pediatr Nephrol. 1995;9:206–212.

    Article  PubMed  CAS  Google Scholar 

  20. Sundy JS, Hershfield MS. Uricase and other novel agents for the management of patients with treatment-failure gout. Curr Rheumatol Rep. 2007;9:258–264.

    Article  PubMed  CAS  Google Scholar 

  21. Navolanic PM, Pui CH, Larson RA, Bishop MR, Pearce TE, Cairo MS, Goldman SC, Jeha SC, Shanholtz CB, Leonard JP, McCubrey JA. Elitek-rasburicase: an effective means to prevent and treat hyperuricemia associated with tumor lysis syndrome, a Meeting Report, Dallas, Texas, January 2002. Leukemia. 2003;17:499–514.

    Article  PubMed  CAS  Google Scholar 

  22. Vogt B. Urate oxidase (rasburicase) for treatment of severe tophaceous gout. Nephrol Dial Transplant. 2005;20:431–433.

    Article  PubMed  CAS  Google Scholar 

  23. Richette P, Briere C, Hoenen-Clavert V, Loeuille D, Bardin T. Rasburicase for tophaceous gout not treatable with allopurinol: an exploratory study. J Rheumatol. 2007;34:2093–2098.

    PubMed  CAS  Google Scholar 

  24. Chen RH-L, Abuchowski A, van Es T, Palczuk NC, Davis FF. Properties of two urate oxidases modified by the covalent attachment of poly(ethylene glycol). Biochim Biophys Acta. 1981;660:293–298.

    PubMed  CAS  Google Scholar 

  25. Savoca KV, Davis FF, Palczuk NC. Induction of tolerance in mice by uricase and monomethoxy-polyethylene glycol-modified uricase. Int Arch Allergy Appl Immunol. 1984;75:58–67.

    Article  PubMed  CAS  Google Scholar 

  26. Lee WY, Sehon AH. Suppression of reaginic antibodies with modified allergens. I. Reduction in allergenicity of protein allergens by conjugation to polyethylene glycol. Int Arch Allergy Appl Immunol. 1978;56:159–170.

    Article  PubMed  CAS  Google Scholar 

  27. Lee WY, Sehon AH, Akerblom E. Suppression of reaginic antibodies with modified allergens IV. Induction of suppressor T cells by conjugates of polyethylene glycol (PEG) and monomethoxy PEG with ovalbumin. Int Archs Allergy Appl Immun. 1981;64:100–114.

    Article  CAS  Google Scholar 

  28. Tsuji J, Hirose K, Kasahara E, Naitoh M, Yamamoto I. Studies on the antigenicity of the polyeth ylene glycol-modified uricase. Int J Immunopharmacol. 1985;7:725–730.

    Article  PubMed  CAS  Google Scholar 

  29. Caliceti P, Schiavon O, Veronese FM. Biopharmaceutical properties of uricase conjugated to neu tral and amphiphilic polymers. Bioconjugate Chem. 1999;10:638–646.

    Article  CAS  Google Scholar 

  30. Caliceti P, Schiavon O, Veronese FM. Immunological properties of uricase conjugated to neutral soluble polymers. Bioconjug Chem. 2001;12:515–522.

    Article  PubMed  CAS  Google Scholar 

  31. Abuchowski A, Karp D, Davis FF. Reduction of plasma urate levels in the cockerel with polyeth ylene glycol-uricase. J Pharmacol Exp Ther. 1981;219:352–354.

    PubMed  CAS  Google Scholar 

  32. Hershfield MS, Chaffee S, Koro-Johnson L, Mary A, Smith AA, Short SA. Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol. Proc Natl Acad Sci USA. 1991;88:7185–7189.

    Article  PubMed  CAS  Google Scholar 

  33. Sherman MR, Saifer MG, Perez-Ruiz F. PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv Drug Deliv Rev. 2008;60:59–68.

    Article  PubMed  CAS  Google Scholar 

  34. Wu X, Wakamiya M, Vaishnav S, Geske R, Montgomery CM Jr, Jones P, Bradley A, Caskey CT. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sei USA. 1994;91:742–746.

    Article  CAS  Google Scholar 

  35. Kelly SJ, Delnomdedieu M, Oliverio MI, Williams LD, Saifer MGP, Sherman MR, Coffman TM, Johnson GA, Hershfield MS. Diabetes insipidus in uricase-deficient mice: A model for evaluating therapy with poly(ethy lene glycol)-modified uricase. J Am Soc Nephrol. 2001;12:1001–1009.

    PubMed  CAS  Google Scholar 

  36. Ganson NJ, Kelly SJ, Scarlett E, Sundy JS, Hershfield MS. Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res Ther. 2006;8:R12.

    Article  PubMed  CAS  Google Scholar 

  37. Sundy JS, Ganson NJ, Kelly SJ, Scarlett E, Rehrig CD, Huang W, Hershfield MS. Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum. 2007;56:1021–1028.

    Article  PubMed  CAS  Google Scholar 

  38. Sundy JS, Becker M, Baraf HS, Barkuizen A, Moreland LW, Huang B, Waltrip RW, Maroli AN, Horowitz Z. Reduction of plasma urate following multiple doses of pegloticase (PEG-Uricase) in subjects with treatment failure gout. Arthritis Rheum. 2008;58:2882–2891.

    Article  PubMed  Google Scholar 

  39. Sundy JS, Baraf HS, Becker M, Edwards NL, Gutierrez-Urena SR, Treadwell EL, Vazquez-Mellado J, Yood RA, Horowitz Z, Huang B, Maroli AN, Waltrip RW. Efficacy and safety of intra venous (IV) pegloticase (PGL) in subjects with treatment failure gout (TFG): Phase 3 results from GOUT1 and GOUT2. Abstract 635, American College of Rheumatology Scientific Meeting, San Francisco CA, November 2008.

    Google Scholar 

  40. Baraf HS, Becker M, Edwards NL, Gutierrez-Urena SR, Sundy JS, Treadwell EL, Vazquez-Mellado J, Yood RA, Horowitz Z, Huang B, Maroli AN, Waltrip RW. Tophus response to peglot icase (PGL) therapy: pooled results from GOUT1 and GOUT2, PGL phase 3 randomized, double blind, placebo-controlled trials. Abstract 22, American College of Rheumatology Scientific Meeting, San Francisco CA, November 2008.

    Google Scholar 

  41. Edwards NL, Baraf HS, Becker M, Gutierrez-Urena SR, Sundy JS, Treadwell EL, Vazquez-Mellado J, Yood RA, Kawata AK, Benjamin KL, Horowitz Z, Huang B, Maroli AN, Waltrip RW. Improvement in health-related quality of life (HRQL) and disability index in treatment failure gout (TFG) after peglotidase (PGL) therapy: pooled results from GOUT1 and GOUT2, phase 3 ran domized, double blind, placebo (PBO)-controlled trials. Abstract 27, American College of Rheumatology Scientific Meeting, San Francisco CA, November 2008.

    Google Scholar 

  42. Becker M, Treadwell EL, Baraf HS, Edwards NL, Gutierrez-Urena SR, Sundy JS, Vazquez-Mellado J, Yood RA, Horowitz Z, Huang B, Maroli AN, Waltrip RW, Wright D. Immunoreactivity and clinical response to pegloticase (PGL): pooled data from GOUT1 and GOUT2, PGL phase 3 randomized, double blind, placebo-controlled trials. Abstract 1945, American College of Rheumatology Scientific Meeting, San Francisco CA, November 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Hershfield, M.S., Sundy, J.S., Ganson, N.J., Kelly, S.J. (2009). Development of PEGylated mammalian urate oxidase as a therapy for patients with refractory gout. In: Veronese, F.M. (eds) PEGylated Protein Drugs: Basic Science and Clinical Applications. Milestones in Drug Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8679-5_13

Download citation

Publish with us

Policies and ethics