Pegfilgrastim — designing an improved form of rmetHuG-CSF

  • Graham Molineux
Part of the Milestones in Drug Therapy book series (MDT)


rmetHuG-CSF is the recombinant version of natural granulocyte colony-stimulating factor, the dominant stimulator in the production of neutrophilic leukocytes (neutrophils). Neutrophils represent the first line of defense against invading pathogens and when neutrophil numbers are suppressed by cancer chemotherapy, patients become liable to life-threatening infections.

The clearance of rmetHuG-CSF is effected by a combination of neutrophil mediated degradation and renal filtration. Site-directed addition of a single, linear PEG molecule yielded a form of G-CSF (pegfilgrastim) that was shown to be resistant to renal elimination yet remained sensitive to neutrophilmediated destruction. This semi-synthetic cytokine drug can persist in the plasma for extended periods in neutropenic conditions, yet is cleared rapidly when neutrophils recover. This lends a degree of automation to the therapeutic control of neutrophil numbers which has been exploited in clinical practice since its approval for human use in 2002.


Granulocyte Colony Stimulate Factor Darbepoetin Alfa Peripheral Blood Progenitor Cell Severe Congenital Neutropenia Experimental Hematology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicola NA, Begley CG, Metcalf D (1985) Identification of the human analog of a regulator that induces differentiation in murine leukemic cells. Nature 314: 625–628CrossRefPubMedGoogle Scholar
  2. 2.
    Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC, Chazin VR, Bruszewski J, Lu H, Chen KK (1986) Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 232: 61–65CrossRefPubMedGoogle Scholar
  3. 3.
    Nagata S, Tsuchiya M, Asano S, Kaziro Y, Yamazaki T, Yamamoto O, Hirata Y, Kubota N, Oheda M, Nomura H (1986) Molecular cloning and expression of cDNA for human granulocyte colonystimulating factor. Nature 319: 415–418CrossRefPubMedGoogle Scholar
  4. 4.
    Bronchud MH, Scarffe JH, Thatcher N, Crowther D, Souza LM, Alton NK, Testa NG, Dexter TM (1987) Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. British Journal of Cancer 56: 809–813PubMedGoogle Scholar
  5. 5.
    Gabrilove JL, Jakubowski A, Fain K, Grous J, Scher H, Sternberg C, Yagoda A, Clarkson B, Bonilla MA, Oettgen HF (1988) Phase I study of granulocyte colony-stimulating factor in patients with transitional cell carcinoma of the urothelium. Journal of Clinical Investigation 82: 1454–1461CrossRefPubMedGoogle Scholar
  6. 6.
    Gabrilove JL, Jakubowski A, Scher H, Sternberg C, Wong G, Grous J, Yagoda A, Fain K, Moore MA, Clarkson B (1988) Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. New England Journal of Medicine 318: 1414–1422PubMedCrossRefGoogle Scholar
  7. 7.
    Morstyn G, Campbell L, Souza LM, Alton NK, Keech J, Green M, Sheridan W, Metcalf D, Fox R (1988) Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet 1: 667–672CrossRefPubMedGoogle Scholar
  8. 8.
    Ono M (1994) Physicochemical and biochemical characteristics of glycosylated recombinant human granulocyte colony stimulating factor (lenograstim). European Journal of Cancer 30A: Suppl-111Google Scholar
  9. 9.
    Uzumaki H, Okabe T, Sasaki N, Hagiwara K, Takaku F, Tobita M, Yasukawa K, Ito S, Umezawa Y (1989) Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. Proceedings of the National Academy of Sciences of the United States of America 86: 9323–9326CrossRefPubMedGoogle Scholar
  10. 10.
    Molineux G, Pojda Z, Hampson IN, Lord BI, Dexter TM (1990) Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 76: 2153–2158PubMedGoogle Scholar
  11. 11.
    Sheridan WP, Begley CG, Juttner CA, Szer J, To LB, Maher D, McGrath KM, Morstyn G, Fox RM (1992) Effect of peripheral-blood progenitor cells mobilised by filgrastim G-CSF on platelet recovery after high-dose chemotherapy. Lancet 339: 640–644CrossRefPubMedGoogle Scholar
  12. 12.
    Morstyn G, Campbell L, Lieschke G, Layton JE, Maher D, O’Connor M, Green M, Sheridan W, Vincent M, Alton K (1989) Treatment of chemotherapy-induced neutropenia by subcutaneously administered granulocyte colony-stimulating factor with optimization of dose and duration of therapy. Journal of Clinical Oncology 7: 1554–1562PubMedGoogle Scholar
  13. 13.
    Di Leo A, Bajetta E, Nole F, Biganzoli L, Ferrari L, Oriana S, Riboldi G, Bohm S, Spatti G, Raspagliesi F (1994) The intramuscular administration of granulocyte colony-stimulating factor as an adjunct to chemotherapy in pretreated ovarian cancer patients: an Italian Trials in Medical Oncology (ITMO) Group pilot study. British Journal of Cancer 69: 961–966PubMedGoogle Scholar
  14. 14.
    Tanaka H, Tokiwa T (1990) Pharmacokinetics of recombinant human granulocyte colony-stimulating factor studied in the rat by a sandwich enzyme-linked immunosorbent assay. Journal of Pharmacology & Experimental Therapeutics 255: 724–729Google Scholar
  15. 15.
    Tanaka H, Kaneko T (1992) Pharmacokinetic and pharmacodynamic comparisons between human granulocyte colony-stimulating factor purified from human bladder carcinoma cell line 5637 culture medium and recombinant human granulocyte colony-stimulating factor produced in Escherichia coli. Journal of Pharmacology & Experimental Therapeutics 262: 439–444Google Scholar
  16. 16.
    Eliason JF, Greway A, Tare N, Inoue T, Bowen S, Dar M, Yamasaki M, Okabe M, Horii I (2000) Extended activity in cynomolgus monkeys of a granulocyte colony-stimulating factor mutein conjugated with high molecular weight polyethylene glycol. Stem Cells (Miamisburg) 18: 40–45CrossRefGoogle Scholar
  17. 17.
    Kearns CM, Wang WC, Stute N, Ihle JN, Evans WE (1993) Disposition of recombinant human granulocyte colony-stimulating factor in children with severe chronic neutropenia. Journal of Pediatrics 123: 471–479CrossRefPubMedGoogle Scholar
  18. 18.
    Nichol JL, Hokom MM, Hornkohl A, Sheridan WP, Ohashi H, Kato T, Li YS, Bartley TD, Choi E, Bogenberger J (1995) Megakaryocyte growth and development factor. Analyses of in vitro effects on human megakaryopoiesis and endogenous serum levels during chemotherapy-induced thrombocytopenia. Journal of Clinical Investigation 95: 2973–2978CrossRefPubMedGoogle Scholar
  19. 19.
    Marsh JC, Gibson FM, Prue RL, Bowen A, Dunn VT, Hornkohl AC, Nichol JL, Gordon-S mith EC (1996) Serum thrombopoietin levels in patients with aplastic anaemia. British Journal of Haematology 95: 605–610CrossRefPubMedGoogle Scholar
  20. 20.
    Emmons RV, Reid DM, Cohen RL, Meng G, Young NS, Dunbar CE, Shulman NR (1996) Human thrombopoietin levels are high when thrombocytopenia is due to megakaryocyte deficiency and low when due to increased platelet destruction. Blood 87: 4068–4071PubMedGoogle Scholar
  21. 21.
    Fielder PJ, Hass P, Nagel M, Stefanich E, Widmer R, Bennett GL, Keller GA, de Sauvage FJ, Eaton D (1997) Human platelets as a model for the binding and degradation of thrombopoietin. Blood 89: 2782–2788PubMedGoogle Scholar
  22. 22.
    Kato M, Kamiyama H, Okazaki A, Kumaki K, Kato Y, Sugiyama Y (1997) Mechanism for the nonlinear pharmacokinetics of erythropoietin in rats. Journal of Pharmacology & Experimental Therapeutics 283: 520–527Google Scholar
  23. 23.
    Redman BG, Flaherty L, Chou TH, Kraut M, Martino S, Simon M, Valdivieso M, Groves E (1992) Phase I trial of recombinant macrophage colony-stimulating factor by rapid intravenous infusion in patients with cancer. Journal of Immunotherapy 12: 50–54CrossRefPubMedGoogle Scholar
  24. 24.
    Bauer RJ, Gibbons JA, Bell DP, Luo ZP, Young JD (1994) Nonlinear pharmacokinetics of recombinant human macrophage colony-stimulating factor (M-CSF) in rats. Journal of Pharmacology & Experimental Therapeutics 268: 152–158Google Scholar
  25. 25.
    Layton JE, Hockman H, Sheridan WP, Morstyn G (1989) Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor. Blood 74: 1303–1307PubMedGoogle Scholar
  26. 26.
    Shimazaki C, Uchiyama H, Fujita N, Araki S, Sudo Y, Yamagata N, Ashihara E, Goto H, Inaba T, Haruyama H (1995) Serum levels of endogenous and exogenous granulocyte colony-stimulating factor after autologous blood stem cell transplantation. Experimental Hematology 23: 1497–1502PubMedGoogle Scholar
  27. 27.
    Takatani H, Soda H, Fukuda M, Watanabe M, Kinoshita A, Nakamura T, Oka M (1996) Levels of recombinant human granulocyte colony-stimulating factor in serum are inversely correlated with circulating neutrophil counts. Antimicrobial Agents & Chemotherapy 40: 988–991Google Scholar
  28. 28.
    Stute N, Santana VM, Rodman J H, Schell MJ, Ihle JN, Evans WE (1992) Pharmacokinetics of subcutaneous recombinant human granulocyte colony-stimulating factor in children. Blood 79: 2849–2854PubMedGoogle Scholar
  29. 29.
    Sturgill MG, Huhn RD, Drachtman RA, Ettinger AG, Ettinger LJ (1997) Pharmacokinetics of intravenous recombinant human granulocyte colony-stimulating factor (rhG-CSF) in children receiving myelosuppressive cancer chemotherapy: clearance increases in relation to absolute neu-trophil count with repeated dosing. American Journal of Hematology 54: 124–130CrossRefPubMedGoogle Scholar
  30. 30.
    Briddell R, Stonev G, Molineux G (2001) Investigation of the mode of clearance of filgrastim and filgrastim SD/01 by human peripheral blood neutrophils in vitro. Experimental Hematology 29Google Scholar
  31. 31.
    Tanaka H, Tokiwa T (1990) Influence of renal and hepatic failure on the pharmacokinetics of recombinant human granulocyte colony-stimulating factor krn-8601 in the rat. Cancer Research 50:6615–6619PubMedGoogle Scholar
  32. 32.
    Kuwabara T, Ishikawa Y, Kobayashi H, Kobayashi S, Sugiyama Y (1995) Renal clearance of a recombinant granulocyte colony-stimulating factor, nartograstim, in rats. Pharmaceutical Research 12: 1466–1469CrossRefPubMedGoogle Scholar
  33. 33.
    Tanaka J, Miyake T, Shimizu T, Wakayama T, Tsumori M, Koshimura K, Murakami Y, Kato Y (2002) Effect of continuous subcutaneous administration of a low dose of G-CSF on stem cell mobilization in healthy donors: A feasibility study. International Journal of Hematology 75: 489–492CrossRefPubMedGoogle Scholar
  34. 34.
    Furuya H, Wakayama T, Ohguni S, Yamauchi K, Tanaka J, Hatazoe T, Kato Y (1995) Effect of continuous subcutaneous administration of a small dose of granulocyte colony stimulating factor (G-CSF) by the use of a portable infusion pump in patients with non-Hodgkin’s lymphoma receiving chemotherapy. International Journal of Hematology 61: 123–129CrossRefPubMedGoogle Scholar
  35. 35.
    Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA (2003) Darbepoetin alfa has a longer serum half-life and greater in vivo potency than recombinant human erythropoietin. Experimental Hematology 31: 290–299CrossRefPubMedGoogle Scholar
  36. 36.
    Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, Ponting I (2004) Control of rHuEPO biological activity: The role of carbohydrate. Experimental Hematology 32: 1146–1155CrossRefPubMedGoogle Scholar
  37. 37.
    Heatherington AC, Schuller J, Mercer AJ (2001) Pharmacokinetics of novel erythropoiesis stimulating protein (NESP) in cancer patients: preliminary report. British Journal of Cancer 84: Suppl-6Google Scholar
  38. 38.
    Halpern W, Riccobene TA, Agostini H, Baker K, Stolow D, Gu M-L, Hirsch J, Mahoney A, Carrell J, Boyd E et al. (2002) AlbugraninTM, a recombinant human granulocyte colony stimulating factor (G-CSF) genetically fused to recombinant human albumin induces prolonged myelopoietic effects in mice and monkeys. Pharmaceutical Research 19: 1720–1729CrossRefPubMedGoogle Scholar
  39. 39.
    Jensen-Pippo KE, Whitcomb KL, Deprince RB, Ralph L, Habberfield AD (1996) Enternal bioavailability of human granulocyte colony stimulating factor conjugated with poly(ethylene glycol). Pharmaceutical Research (New York) 13: 102–107Google Scholar
  40. 40.
    Choi SH, Lee H, Park TG (2003) PEGylation of G-CSF using cleavable oligo-lactic acid linkage. Journal of Controlled Release 89: 271–284CrossRefPubMedGoogle Scholar
  41. 41.
    DeFrees S, Wang Z-G, Xing R, Scott AE, Wang J, Zopf D, Gouty DL, Sjoberg ER, Panneerselvam K, Brinkman-Van der Linden ECM et al. (2006) GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 16: 833–843CrossRefPubMedGoogle Scholar
  42. 42.
    Mueller H-J, Loening L, Horn A, Schwabe D, Gunkel M, Schrappe M, von Schuetz V, Henze G, da Palma JC, Ritter J et al. (2000) Pegylated asparaginase (OncasparTM) in children with ALL: Drug monitoring in reinduction according to the ALL/NHL-BFM 95 protocols. British Journal of Haematology 110: 379–384CrossRefGoogle Scholar
  43. 43.
    Melton A, Hershfield MS, Greenberg ML, Hatem C, Markert ML, Kurtzberg J, Abuchowski A, Buckley RH (1987) Treatment of adenosine deaminase-deficient severe combined immune deficiency ADA-SCID with polyethylene glycol-modified bovine adenosine deaminase PEG-ADA. Journal of Allergy & Clinical Immunology 79: 252Google Scholar
  44. 44.
    Karasiewicz R, Nalin C, Rosen P (1995) Peg-interferon conjugates. Official Gazette of the United States Patent & Trademark Office Patents: 17, 1995Google Scholar
  45. 45.
    Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung W-J, Porter JE, Ehrlich GK, Pan W, Xu Z-X, Modi MW et al. (2001) Rational design of a potent, long-lasting form of interferon: A 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjugate Chemistry 12: 195–202CrossRefPubMedGoogle Scholar
  46. 46.
    Malik F, Brew J, Maidment SA, Delgado C, Francis GE (2000) PEG-modified erythropoietin with improved efficacy. Experimental Hematology 28: 106CrossRefGoogle Scholar
  47. 47.
    Sato H, Yamamoto K, Hayashi E, Takahara Y (2000) Transglutaminase-mediated dual and sitespecific incorporation poly(ethylene glycol) derivatives into a chimeric interleukin-2. Bioconjugate Chemistry 11: 502–509CrossRefPubMedGoogle Scholar
  48. 48.
    Hokom MM, Lacey D, Kinstler OB, Choi E, Kaufman S, Faust J, Rowan C, Dwyer E, Nichol JL, Grasel T et al. (1995) Pegylated megakaryocyte growth and development factor abrogates the lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood 86: 4486–4492PubMedGoogle Scholar
  49. 49.
    Jolling K, Ruixo JJP, Hemeryck A, Piotrovskij V, Greway T (2004) Population pharmacokinetic analysis of pegylated human erythropoietin in rats. Journal of Pharmaceutical Sciences 93: 3027–3038CrossRefPubMedGoogle Scholar
  50. 50.
    Kuan C-T, Wang Q-C, Pastan I (1994) Pseudomonas exotoxin A mutants: Replacement of surface exposed residues in domain II with cysteine residues that can be modified with polyethylene glycol in a site-specific manner. Journal of Biological Chemistry 269: 7610–7616PubMedGoogle Scholar
  51. 51.
    Tsutsumi Y, Onda M, Nagata S, Lee B, Kreitman RJ, Pastan I (2000) Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proceedings of the National Academy of Sciences of the United States of America 97: 8548–8553CrossRefPubMedGoogle Scholar
  52. 52.
    Benhar I, Wang Q-C, Fitzgerald D, Pastan I (1994) Pseudomonas exotoxin A mutants: Replacement of surface-exposed residues in domain III with cysteine residues that can be modified with polyethylene glycol in a site-specific manner. Journal of Biological Chemistry 269: 13398–13404PubMedGoogle Scholar
  53. 53.
    Gaertner HF, Offord RE (1996) Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins. Bioconjugate Chemistry 7: 38–44CrossRefPubMedGoogle Scholar
  54. 54.
    Wang M, Lee LS, Nepomich A, Yang J-D, Conover C, Whitlow M, Filpula D (1 277) Single-chain Fv with manifold N-glycans as bifunctional scaffolds for immunomolecules. Protein Engineering 11:1277–1283Google Scholar
  55. 55.
    Kinstler OB, Brems DN, Lauren SL, Paige AG, Hamburger JB, Treuheit MJ (1996) Characterization and stability of N-terminally PEGylated rhG-CSF. Pharmaceutical Research 13: 996–1002CrossRefPubMedGoogle Scholar
  56. 56.
    Kinstler O, Molineux G, Treuheit M, Ladd D, Gegg C (2002) Mono-N-terminal polyethylene glycol)-protein conjugates. Advanced Drug Delivery Reviews 54(4): 477–485CrossRefPubMedGoogle Scholar
  57. 57.
    Molineux G, Kinstler O, Briddell B, Hartley C, McElroy P, Kerzic P, Sutherland W, Stoney G, Kern B, Fletcher FA et al. (1999) A new form of Filgrastim with sustained duration in vivo and enhanced ability to mobilize PBPC in both mice and humans. Experimental Hematology 27: 1724–1734CrossRefPubMedGoogle Scholar
  58. 58.
    Johnston E, Crawford J, Blackwell S, Bjurstrom T, Lockbaum P, Roskos L, Yang B-B, Gardner S, Miller-Messana MA, Shoemaker D et al. (2000) Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. Journal of Clinical Oncology 18:2522–2528PubMedGoogle Scholar
  59. 59.
    Green MD, Koelbl H, Baselga J, Galid A, Guillem V, Gascon P, Siena S, Lalisang RI, Samonigg H, Clemens MR et al. (2003) A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. Annals of Oncology 14: 29–35CrossRefPubMedGoogle Scholar
  60. 60.
    Holmes FA, O’Shaughnessy JA, Vukelja S, Jones SE, Shogan J, Savin M, Glaspy J, Moore M, Meza L, Wiznitzer I et al. (2002) Blinded, randomized, multicenter study to evaluate single administration pegfilgrastim once per cycle versus daily filgrastim as an adjunct to chemotherapy in patients with high-risk stage II or stage III/IV breast cancer. Journal of Clinical Oncology 20: 727–731CrossRefPubMedGoogle Scholar
  61. 61.
    Yang B-B, Lum PK, Hayashi MM, Roskos LK (2004) Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. Journal of Pharmaceutical Sciences 93: 1367–1373CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Graham Molineux
    • 1
  1. 1.Amgen Inc.One Amgen Center DriveThousand OaksUSA

Personalised recommendations