Skip to main content

Enumeration and Random Realization of Triangulated Surfaces

  • Chapter
Book cover Discrete Differential Geometry

Part of the book series: Oberwolfach Seminars ((OWS,volume 38))

Abstract

We discuss different approaches for the enumeration of triangulated surfaces. In particular, we enumerate all triangulated surfaces with 9 and 10 vertices. We also show how geometric realizations of orientable surfaces with few vertices can be obtained by choosing coordinates randomly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Altshuler, Combinatorial 3-manifolds with few vertices, J. Comb. Theory, Ser. A 16 (1974), 165–173.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Altshuler, J. Bokowski, and P. Schuchert, Neighborly 2-manifolds with 12 vertices, J. Comb. Theory, Ser. A 75 (1996), 148–162.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Altshuler and L. Steinberg, Neighborly 4-polytopes with 9 vertices, J. Comb. Theory, Ser. A 15 (1973), 270–287.

    Article  MATH  MathSciNet  Google Scholar 

  4. _____, An enumeration of combinatorial 3-manifolds with nine vertices, Discrete Math. 16 (1976), 91–108.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Archdeacon, C.P. Bonnington, and J.A. Ellis-Monaghan, How to exhibit toroidal maps in space, Discrete Comput. Geometry, 38 (2007), 573–594.

    Article  MATH  MathSciNet  Google Scholar 

  6. D.[W.] Barnette, Generating the triangulations of the projective plane, J. Comb. Theory, Ser. B 33 (1982), 222–230.

    Article  MATH  MathSciNet  Google Scholar 

  7. D.W. Barnette and A.L. Edelson, All 2-manifolds have finitely many minimal triangulations, Isr. J. Math. 67 (1988), 123–128.

    Article  MathSciNet  Google Scholar 

  8. J. Bokowski, On heuristic methods for finding realizations of surfaces, Discrete Differential Geometry (A.I. Bobenko, P. Schröder, J.M. Sullivan, G.M. Ziegler, eds.), Oberwolfach Seminars, vol. 38, Birkhäuser, 2008, this volume, pp. 255–260.

    Google Scholar 

  9. J. Bokowski and U. Brehm, A new polyhedron of genus 3 with 10 vertices, Intuitive Geometry, Internat. Conf. on Intuitive Geometry, Siófok, Hungary, 1985 (K. Böröczky and G. Fejes Tóth, eds.), Colloquia Mathematica Societatis János Bolyai, vol. 48, North-Holland, Amsterdam, 1987, pp. 105–116.

    Google Scholar 

  10. _____, A polyhedron of genus 4 with minimal number of vertices and maximal symmetry, Geom. Dedicata 29 (1989), 53–64.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Bokowski and A. Eggert, Toutes les réalisations du tore de Moebius avec sept sommets/All realizations of Moebius’ torus with 7 vertices, Topologie Struct. 17 (1991), 59–78.

    MATH  MathSciNet  Google Scholar 

  12. J. Bokowski and A. Guedes de Oliveira, On the generation of oriented matroids, Discrete Comput. Geom. 24 (2000), 197–208.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Bokowski and B. Sturmfels, Computational Synthetic Geometry, Lecture Notes in Mathematics, vol. 1355, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  14. R. Bowen and S. Fisk, Generation of triangulations of the sphere, Math. Comput. 21 (1967), 250–252.

    Article  MATH  MathSciNet  Google Scholar 

  15. U. Brehm, Polyeder mit zehn Ecken vom Geschlecht drei, Geom. Dedicata 11 (1981), 119–124.

    Article  MATH  MathSciNet  Google Scholar 

  16. _____, A maximally symmetric polyhedron of genus 3 with 10 vertices, Mathematika 34 (1987), 237–242.

    MATH  MathSciNet  Google Scholar 

  17. G. Brinkmann and B. McKay, plantri: a program for generating planar triangulations and planar cubic graphs, cs.anu.edu.au/people/bdm/plantri/, 1996–2001, version 4.1.

    Google Scholar 

  18. _____, Fast generation of planar graphs, MATCH Commun. Math. Comput. Chem. 58 (2007), 323–357.

    Google Scholar 

  19. M. Brückner, Geschichtliche Bemerkungen zur Aufzählung der Vielfl ache, Pr. Realgymn. Zwickau 578 (1897).

    Google Scholar 

  20. _____, Über die Anzahl Ψ(n) der allgemeinen Vielfl ache, Atti Congresso Bologna 4 (1931), 5–11.

    Google Scholar 

  21. A. Császár, A polyhedron without diagonals, Acta Sci. Math., Szeged 13 (1949–1950), 140–142.

    Google Scholar 

  22. B. Datta, Two dimensional weak pseudomanifolds on seven vertices, Bol. Soc. Mat. Mex., III. Ser. 5 (1999), 419–426.

    MATH  Google Scholar 

  23. B. Datta and N. Nilakantan, Two-dimensional weak pseudomanifolds on eight vertices, Proc. Indian Acad. Sci., Math. Sci. 112 (2002), 257–281.

    Article  MATH  MathSciNet  Google Scholar 

  24. R.A. Duke, Geometric embedding of complexes, Am. Math. Mon. 77 (1970), 597–603.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Fendrich, Methoden zur Erzeugung und Realisierung von triangulierten kombinatorischen 2-Mannigfaltigkeiten, Diplomarbeit, Technische Universität Darmstadt, 2003, 56 pages.

    Google Scholar 

  26. M. Gardner, Mathematical Games. On the remarkable Császár polyhedron and its applications in problem solving, Scientific American 232 (1975), no. 5, 102–107.

    Article  Google Scholar 

  27. E. Gawrilow and M. Joswig, polymake, version 2.2, 1997–2006, with contributions by T. Schröder and N. Witte, www.math.tu-berlin.de/polymake.

    Google Scholar 

  28. D.W. Grace, Computer search for non-isomorphic convex polyhedra, Report CS 15, Computer Science Department, Stanford University, 1965.

    Google Scholar 

  29. B. Grünbaum, Convex Polytopes, Pure and Applied Mathematics, vol. 16, Interscience Publishers, London, 1967, second edition (V. Kaibel, V. Klee, and G.M. Ziegler, eds.), Graduate Texts in Mathematics, vol. 221, Springer-Verlag, New York, NY, 2003.

    Google Scholar 

  30. P.J. Heawood, Map-colour theorem, Quart. J. Pure Appl. Math. 24 (1890), 332–338.

    Google Scholar 

  31. S. Hougardy, F.H. Lutz, and M. Zelke, Polyhedra of genus 2 with 10 vertices and minimal coordinates, Electronic Geometry Models No. 2005.08.001 (2007), www.eg-models.de/2005.08.001.

    Google Scholar 

  32. _____, Polyhedra of genus 3 with 10 vertices and minimal coordinates, Electronic Geometry Models No. 2006.02.001 (2007), www.eg-models.de/2006.02.001.

    Google Scholar 

  33. _____, Surface realization with the intersection edge functional, arXiv:math.MG/0608538, 2006, 19 pages; Exp. Math., to appear.

    Google Scholar 

  34. _____, Polyhedral tori with minimal coordinates, arXiv:0709.2794, 2007, 5 pages.

    Google Scholar 

  35. M. Jungerman and G. Ringel, Minimal triangulations on orientable surfaces, Acta Math. 145 (1980), 121–154.

    Article  MATH  MathSciNet  Google Scholar 

  36. E.G. Köhler and F.H. Lutz, Triangulated Manifolds with Few Vertices: Vertex-Transitive Triangulations I, arXiv:math.GT/0506520, 2005, 74 pages.

    Google Scholar 

  37. W. Kühnel and G. Lassmann, Neighborly combinatorial 3-manifolds with dihedral automorphism group, Isr. J. Math. 52 (1985), 147–166.

    Article  MATH  Google Scholar 

  38. S.A. Lavrenchenko, Irreducible triangulations of the torus, J. Sov. Math. 51 (1990), 2537–2543, translation from Ukr. Geom. Sb. 30 (1987), 52-62.

    Article  MATH  MathSciNet  Google Scholar 

  39. S.[A.] Lawrencenko and S. Negami, Irreducible triangulations of the Klein bottle, J. Comb. Theory, Ser. B 70 (1997), 265–291.

    Article  MATH  MathSciNet  Google Scholar 

  40. F.H. Lutz, Császár’s torus, Electronic Geometry Models No. 2001.02.069 (2002), www.eg-models.de/2001.02.069.

    Google Scholar 

  41. _____, The Manifold Page, 1999–2007, www.math.tu-berlin.de/diskregeom/stellar/.

    Google Scholar 

  42. F.H. Lutz and J.M. Sullivan, Simplicial manifolds with small valence, in preparation.

    Google Scholar 

  43. B.D. McKay, nauty, version 2.2, cs.anu.edu.au/people/bdm/nauty/, 1994–2003.

    Google Scholar 

  44. A.F. Möbius, Mittheilungen aus Möbius’ Nachlass: I. Zur Theorie der Polyëder und der Elementarverwandtschaft, GesammelteWerke II (F. Klein, ed.), Verlag von S. Hirzel, Leipzig, 1886, pp. 515–559.

    Google Scholar 

  45. G. Ringel, Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann, Math. Ann. 130 (1955), 317–326.

    Article  MATH  MathSciNet  Google Scholar 

  46. L. Schewe, Satisfiability Problems in Discrete Geometry, Dissertation, Technische Universität Darmstadt, 2007, 101 pages.

    Google Scholar 

  47. E. Steinitz, Polyeder und Raumeinteilungen, Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Dritter Band: Geometrie, III.1.2., Heft 9 (W.Fr. Meyer and H. Mohrmann, eds.), B. G. Teubner, Leipzig, 1922, pp. 1–139.

    Google Scholar 

  48. E. Steinitz and H. Rademacher, Vorlesungen über die Theorie der Polyeder unter Einschluß der Elemente der Topologie, Grundlehren der mathematischenWissenschaften, vol. 41, Springer-Verlag, Berlin, 1934, reprint, 1976.

    Google Scholar 

  49. T. Sulanke, Source for surftri and lists of irreducible triangulations, hep.physics.indiana.edu/~tsulanke/graphs/surftri/, 2005, version 0.96.

    Google Scholar 

  50. _____, Note on the irreducible triangulations of the Klein bottle, J. Comb. Theory, Ser. B 96 (2006), 964–972.

    Google Scholar 

  51. _____, Generating irreducible triangulations of surfaces, arXiv:math.CO/0606687, 2006, 11 pages.

    Google Scholar 

  52. _____, Irreducible triangulations of low genus surfaces, arXiv:math.CO/0606690, 2006, 10 pages.

    Google Scholar 

  53. T. Sulanke and F.H. Lutz, Isomorphism-free lexicographic enumeration of triangulated surfaces and 3-manifolds, arXiv:math.CO/0610022, 2007, 24 pages; Eur. J. Comb., to appear.

    Google Scholar 

  54. W.T. Tutte, A census of planar triangulations, Can. J. Math. 14 (1962), 21–38.

    MATH  MathSciNet  Google Scholar 

  55. G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, NY, 1995, revised edition, 1998.

    Google Scholar 

  56. _____, Polyhedral surfaces of high genus, Discrete Differential Geometry (A.I. Bobenko, P. Schröder, J.M. Sullivan, G.M. Ziegler, eds.), Oberwolfach Seminars, vol. 38, Birkhäuser, 2008, this volume, pp. 191–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Lutz, F.H. (2008). Enumeration and Random Realization of Triangulated Surfaces. In: Bobenko, A.I., Sullivan, J.M., Schröder, P., Ziegler, G.M. (eds) Discrete Differential Geometry. Oberwolfach Seminars, vol 38. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8621-4_12

Download citation

Publish with us

Policies and ethics