Advertisement

Elliptic Theory on Manifolds with Corners: I. Dual Manifolds and Pseudodifferential Operators

  • Vladimir Nazaikinskii
  • Anton Savin
  • Boris Sternin
Part of the Trends in Mathematics book series (TM)

Abstract

In this first part of the paper, we define a natural dual object for manifolds with corners and show how pseudodifferential calculus on such manifolds can be constructed in terms of the localization principle in C*-algebras. In the second part, these results will be applied to the solution of Gelfand’s problem on the homotopy classification of elliptic operators for the case of manifolds with corners.

Keywords

Manifold with corners elliptic operator localization principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    U. Bunke, Index theory, eta forms, and Deligne cohomology, Preprint arXiv: math.DG/0201112.Google Scholar
  2. [2]
    J. Dauns and K.H. Hofmann, Representation of rings by sections, Memoirs of the American Mathematical Society, No. 83, Amer. Math. Soc., Providence, R.I., 1968.Google Scholar
  3. [3]
    T. Krainer, Elliptic boundary problems on manifolds with polycylindrical ends, J. Funct. Anal., 244 (2007), no. 2, 351–386.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    R. Lauter and S. Moroianu, The index of cusp operators on manifolds with corners, Ann. Global Anal. Geom. 21 (2002), no. 1, 31–49.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    P.-Y. Le Gall and B. Monthubert, K-theory of the indicial algebra of a manifold with corners, K-Theory 23 (2001), no. 2, 105–113.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    P. Loya, The index of b-pseudodifferential operators on manifolds with corners, Ann. Global Anal. Geom. 27 (2005), no. 2, 101–133.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Melrose, Analysis on manifolds with corners, Lecture Notes, MIT, Cambrige, MA, 1988, Preprint.Google Scholar
  8. [8]
    _____, Pseudodifferential operators, corners, and singular limits, Proceedings of the International Congress of Mathematicians, Kyoto (Berlin-Heidelberg-New York), Springer-Verlag, 1990, pp. 217–234.Google Scholar
  9. [9]
    _____, The eta invariant and families of pseudodifferential operators, Math. Research Letters 2 (1995), no. 5, 541–561.Google Scholar
  10. [10]
    R. Melrose and V. Nistor, K-theory of C*-algebras of b-pseudodifferential operators, Geom. Funct. Anal. 8 (1998), no. 1, 88–122.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. Melrose and P. Piazza, Analytic K-theory on manifolds with corners, Adv. in Math. 92 (1992), no. 1, 1–26.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    B. Monthubert, Groupoids and pseudodifferential calculus on manifolds with corners, J. Funct. Anal. 199 (2003), no. 1, 243–286.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    B. Monthubert and V. Nistor, A topological index theorem for manifolds with corners, arXiv: math.KT/0507601, 2005.Google Scholar
  14. [14]
    V. Nazaikinskii, A. Savin, and B. Sternin, Pseudodifferential operators on stratified manifolds I and II, Differ. Equations, (2007) 43, no. 4, 536–549; 43, no. 5, 704–716.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    V. Nistor, An index theorem for gauge-invariant families: The case of solvable groups, Acta Math. Hungarica 99 (2003), no. 2, 155–183.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    B.A. Plamenevsky and V.N. Senichkin, Representations of C*-algebras of pseudodifferential operators on piecewise-smooth manifolds, St. Petersbg. Math. J. 13 (2001), no. 6, 993–1032.Google Scholar
  17. [17]
    N. Vasilevski, Local principles in operator theory, Lineinye operatory v funktsionalnykh prostranstvakh. Tez. dokl. Severo-Kavkaz. reg. konf., Groznyi, 1989, pp. 32–33.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Vladimir Nazaikinskii
    • 1
  • Anton Savin
    • 2
  • Boris Sternin
    • 2
  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Independent University of MoscowMoscowRussia

Personalised recommendations