Boundaries, Eta Invariant and the Determinant Bundle

  • Richard Melrose
  • Frédéric Rochon
Part of the Trends in Mathematics book series (TM)


Cobordism invariance shows that the index, in K-theory, of a family of pseudodifferential operators on the boundary of a fibration vanishes if the symbol family extends to be elliptic across the whole fibration. For Dirac operators with spectral boundary condition, Dai and Freed [5] gave an explicit version of this at the level of the determinant bundle. Their result, that the eta invariant of the interior family trivializes the determinant bundle of the boundary family, is extended here to the wider context of pseudodifferential families of cusp type.


Eta invariant determinant line bundle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Albin and R.B. Melrose, Fredholm realizations of elliptic symbols on manifolds with boundary, Arxiv: math.DG/0607154.Google Scholar
  2. [2]
    M.F. Atiyah, V.K. Patodi, and I.M. Singer, Spectral asymmetry and Riemannian geometry III, Math. Proc. Cambridge Philos. Soc. 79 (1976), 71–99.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    M.F. Atiyah and I.M. Singer, The index of an elliptic operator IV, Ann. of Math. 93 (1971), 119–138.CrossRefMathSciNetGoogle Scholar
  4. [4]
    J.-M. Bismut and D. Freed, The analysis of elliptic families, II, Comm. Math. Phys. 107 (1986), 103.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    X. Dai and D.S. Freed, η-invariants and determinant lines, J. Math. Phys. 35 (1994), no. 10, 5155–5194, Topology and physics.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Mazzeo and R.B. Melrose, Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math. 2 (1999), no. 4, 833–866.MathSciNetGoogle Scholar
  7. [7]
    R.B. Melrose, The eta invariant and families of pseudodifferential operators, Math. Res. Lett. 2 (1995), no. 5, 541–561. MR 96h:58169zbMATHMathSciNetGoogle Scholar
  8. [8]
    R.B. Melrose and V. Nistor, Homology of pseudodifferential operators I. manifold with boundary.Google Scholar
  9. [9]
    R.B. Melrose and F. Rochon, Families index for pseudodifferential operators on manifolds with boundary, IMRN (2004), no. 22, 1115–1141.CrossRefMathSciNetGoogle Scholar
  10. [10]
    _____, Periodicity of the determinant bundle, Comm. Math. Phys. 274 (2007), no. 1, 141–186.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    W. Müller, Eta invariants and manifolds with boundary, J. Diff. Geom. 40 (1994), 311–377.zbMATHGoogle Scholar
  12. [12]
    D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl. 19 (1985), 31–34.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Richard Melrose
    • 1
  • Frédéric Rochon
    • 2
  1. 1.Department of MathematicsMITCambridgeUSA
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations