The K-theory of Twisted Group Algebras

  • Siegfried Echterhoff
Part of the Trends in Mathematics book series (TM)


We study the K-theory of twisted group algebras with the help of the Baum-Connes conjecture


Compact Group Cohomology Class Closed Subgroup Orientation Preserve Maximal Compact Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Abels. A universal proper G-space. Math. Z. 159 (1978), no. 2, 143–158.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    H. Abels. Parallelizability of proper actions, global K-slices and maximal compact subgroups. Math. Ann. 212 (1974/75), 1–19.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    M. Atiyah, G. Segal. Twisted K-theory. Ukr. Math. Bull. 1 (2004), no. 3, 291–334.MathSciNetGoogle Scholar
  4. [4]
    P. Baum, A. Connes and N. Higson. Classifying space for proper actions and K-theory of group C*-algebras, Contemporary Mathematics, 167, 241–291 (1994).MathSciNetGoogle Scholar
  5. [5]
    L. Baggett and A. Kleppner. Multiplier representations of abelian groups. J. Functional Analysis 14 (1973), 299–324.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    O. Bratteli, G.A. Elliott, D.E. Evans, and A. Kishimoto. Noncommutative spheres. I, International J. Math. 2 (1991), 139–166.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    O. Bratteli and A. Kishimoto. Noncommutative spheres. III. Irrational rotations, Commun. Math. Physics 147 (1992), 605–624.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Brodzki, V. Mathai, J. Rosenberg, and R.J. Szabo. D-Branes, RR-fields and duality on noncommutative manifolds. Preprint (arXiv: hep-th/0607020 v1). To appear in Journal of Physics Conference Series.Google Scholar
  9. [9]
    A.L. Carey, K.C. Hannabuss, V. Mathai, P. McCann. Quantum Hall effect on the hyperbolic plane. Comm. Math. Phys. 190 (1998), 629–673.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    J. Chabert and S. Echterhoff. Twisted equivariant KK-theory and the Baum-Connes conjecture for group extensions. K-Theory 23, 157–200 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Chabert and S. Echterhoff. Permanence properties of the Baum-Connes conjecture. Doc. Math. 6, 127–183 (2001).zbMATHMathSciNetGoogle Scholar
  12. [12]
    J. Chabert, S. Echterhoff, R. Meyer. Deux remarques sur l’application de Baum-Connes. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 7, 607–610.zbMATHMathSciNetGoogle Scholar
  13. [13]
    J. Chabert, S. Echterhoff, R. Nest. The Connes-Kasparov conjecture for almost connected groups and for linear p-adic groups. Publ. Math. Inst. Hautes tudes Sci. 97 (2003), 239–278.zbMATHMathSciNetGoogle Scholar
  14. [14]
    J. Chabert, S. Echterhoff, H. Oyono-Oyono. Going-down functors, the Künneth formula, and the Baum-Connes conjecture. Geom. Funct. Anal. 14 (2004), 491–528.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Connes. Gravity coupled with matter and the foundation of non-commutative geometry. Comm. Math. Phys. 182 (1996), no. 1, 155–176.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    D. Crocker, A. Kumjian, I. Raeburn, D.P. Williams. An equivariant Brauer group and actions of groups on C*-algebras. J. Funct. Anal. 146 (1997), 151–184.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    J. Cuntz. K-theoretic amenability for discrete groups. J. Reine Angew. Math. 344 (1983), 180–195.zbMATHMathSciNetGoogle Scholar
  18. [18]
    J. Dixmier. C*-algebras. North-Holland Mathematical Library, Vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.Google Scholar
  19. [19]
    J. Dixmier, A. Douady. Champs continus d’espaces hilbertiens et de C*-algèbres. Bull. Soc. Math. France 91 (1963) 227–284.zbMATHMathSciNetGoogle Scholar
  20. [20]
    S. Echterhoff, H. Emerson, H.J. Kim. KK-theoretic duality for proper twisted actions. To appear in Math. Annalen.Google Scholar
  21. [21]
    S. Echterhoff, W. Lück, C. Phillips, S. Walters. The structure of crossed products of irrational rotation algebras by finite subgroups of SL(2, ℤ). Preprint.Google Scholar
  22. [22]
    S. Echterhoff, D.P. Williams. Locally inner actions on C 0(X)-algebras. J. Operator Theory 45 (2001), 131–160.zbMATHMathSciNetGoogle Scholar
  23. [23]
    S. Echterhoff, D.P. Williams. Central twisted transformation groups and group C*-algebras of central group extensions. Indiana Univ. Math. J. 51 (2002), no. 6, 1277–1304.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    C. Farsi and N. Watling. Fixed point subalgebras of the rotation algebra, C. R.Math. Rep. Acad. Sci. Canada 14 (1991), 75–80; corrigendum 14 (1991), 234.MathSciNetGoogle Scholar
  25. [25]
    C. Farsi and N. Watling. Quartic algebras, Canad. J. Math. 44 (1992), 1167–1191.zbMATHMathSciNetGoogle Scholar
  26. [26]
    C. Farsi and N. Watling. Cubic algebras, J. Operator Theory 30 (1993), 243–266.zbMATHMathSciNetGoogle Scholar
  27. [27]
    C. Farsi and N. Watling. Elliptic algebras, J. Funct. Anal. 118 (1993), 1–21.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    N. Higson and G. Kasparov. E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144, 23–74, (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    N. Higson, V. Lafforgue and G. Skandalis. Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal. 12 (2002), no. 2, 330–354.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    S. Hurder, D. Olesen, I. Raeburn, J. Rosenberg. The Connes spectrum for actions of abelian groups on continuous-trace algebras. Ergodic Theory Dynam. Systems 6 (1986), 541–560.MathSciNetCrossRefGoogle Scholar
  31. [31]
    G. Kasparov. The operator K-functor and extensions of C*-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 571–636.zbMATHMathSciNetGoogle Scholar
  32. [32]
    G. Kasparov. K-theory, group C*-algebras, and higher signatures (conspectus). In: Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), 101–146, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  33. [33]
    G. Kasparov. Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91, 147–201 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    A. Kumjian. On the K-theory of the symmetrized non-commutative torus, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), 87–89.MathSciNetzbMATHGoogle Scholar
  35. [35]
    A. Kumjian, I. Raeburn, D.P. Williams. The equivariant Brauer groups of commuting free and proper actions are isomorphic. Proc. Amer. Math. Soc. 124 (1996), no. 3, 809–817.zbMATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    G.W. Mackey. Les ensembles boréliens et les extensions des groupes. J. Math. Pures Appl. (9) 36 (1957), 171–178.zbMATHMathSciNetGoogle Scholar
  37. [37]
    G.W. Mackey. Unitary representations of group extensions. I. Acta Math. 99 (1958) 265–311.zbMATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    V. Mathai. K-theory of twisted group C*-algebras and positive scalar curvature. Tel Aviv Topology Conference: Rothenberg Festschrift, Contemp. Math. 231 (1998), 203–225.Google Scholar
  39. [39]
    V. Mathai. The Novikov conjecture for low degree cohomology classes. Geom. Dedicata 99 (2003), 1–15.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    M. Marcolli, V. Mathai. Twisted index theory on good orbifolds. I. Noncommutative Bloch theory. Commun. Contemp. Math. 1 (1999), 553–587.zbMATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    M. Marcolli, V. Mathai. Twisted index theory on good orbifolds. II. Fractional quantum numbers. Comm. Math. Phys. 217 (2001), 55–87.zbMATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    C.C. Moore. Extensions and low dimensional cohomology theory of locally compact groups. I. Trans. Amer. Math. Soc. 113 (1964), 40–63.CrossRefMathSciNetGoogle Scholar
  43. [43]
    C.C. Moore. Extensions and low dimensional cohomology theory of locally compact groups. II. Trans. Amer. Math. Soc. 113 (1964), 64–86.CrossRefGoogle Scholar
  44. [44]
    C.C. Moore. Group extensions and cohomology for locally compact groups. III. Trans. Amer. Math. Soc. 221 (1976), 1–33.zbMATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    J.A. Packer and I. Raeburn. Twisted crossed products of C*-algebras. Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 2, 293–311.zbMATHMathSciNetGoogle Scholar
  46. [46]
    R.S. Palais. On the existence of slices for actions of non-compact Lie groups. Ann. of Math. (2) 73 (1961), 295–323.CrossRefMathSciNetGoogle Scholar
  47. [47]
    A. Polishchuk. Holomorphic bundles on 2-dimensional noncommutative toric orbifolds, Noncommutative geometry and number theory, 341–359, Aspects Math., E37, Vieweg, Wiesbaden, 2006.CrossRefGoogle Scholar
  48. [48]
    I. Raeburn, D.P. Williams. Pull-backs of C*-algebras and crossed products by certain diagonal actions. Trans. Amer. Math. Soc. 287 (1985), no. 2, 755–777.zbMATHCrossRefMathSciNetGoogle Scholar
  49. [49]
    I. Raeburn, D.P. Williams. Morita equivalence and continuous-trace C*-algebras. Mathematical Surveys and Monographs, 60. American Mathematical Society, Providence, RI, 1998.Google Scholar
  50. [50]
    I.E. Segal and R.A. Kunze. Integrals and Operators. 2nd ed. Grundlehren der Mathematischen Wissenschaften 228. Springer Verlag. Berlin, Heidelberg, New York 1978.zbMATHGoogle Scholar
  51. [51]
    S.G. Walters. Chern characters of Fourier modules, Canad. J. Math. 52 (2000), 633–672.zbMATHMathSciNetGoogle Scholar
  52. [52]
    S.G. Walters. K-theory of non-commutative spheres arising from the Fourier automorphism, Canadian J. Math. 53 (2001), 631–672.zbMATHMathSciNetGoogle Scholar
  53. [53]
    S.G. Walters. The AF structure of non commutative toroidal Z/4Z orbifolds, J. reine angew. Math. 568 (2004), 139–196.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Siegfried Echterhoff
    • 1
  1. 1.Mathematisches InstitutWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations