Advertisement

A New Topology on the Space of Unbounded Selfadjoint Operators, K-theory and Spectral Flow

  • Charlotte Wahl
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

We define a new topology, weaker than the gap topology, on the space of selfadjoint unbounded operators on a separable Hilbert space. We show that the subspace of selfadjoint Fredholm operators represents the functor K 1 from the category of compact spaces to the category of abelian groups and prove a similar result for K 0. We define the spectral flow of a continuous path of selfadjoint Fredholm operators generalizing the approach of Booss-Bavnek-Lesch-Phillips.

Keywords

Spectral flow classifying space K-theory unbounded operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    M.F. Atiyah, K-theory, W.A. Benjamin, Inc., 1967.Google Scholar
  2. [APS]
    M.F. Atiyah & V.K. Patodi & I.M. Singer, Spectral asymmetry and Riemannian geometry III, Math. Proc. Camb. Philos. Soc. 79 (1976), 71–99.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [AS]
    M.F. Atiyah & I.M. Singer, Index theory for skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 5–26.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [BLP]
    B. Booss-Bavnbek & M. Lesch & J. Phillips, Unbounded Fredholm operators and spectral flow, Canad. J. Math. 57 (2005), 225–250.zbMATHMathSciNetGoogle Scholar
  5. [HR]
    N. Higson & J. Roe, Analytic K-homology, Oxford Mathematical Monographs. Oxford University Press, 2000.Google Scholar
  6. [J]
    K. Jänich, Vektorraumbündel und der Raum der Fredholm-Operatoren, Math. Ann. 161 (1965), 129–142.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [Jo]
    M. Joachim, Unbounded Fredholm operators and K-theory, High-dimensional manifold topology, World Sci. Publishing, 2003, 177–199.Google Scholar
  8. [Le]
    M. Lesch, The uniqueness of the spectral flow on spaces of unbounded self-adjoint Fredholm operators, Spectral geometry of manifolds with boundary and decomposition of manifolds, Contemp. Math. 366, Amer. Math. Soc., 2005, 193–224.MathSciNetGoogle Scholar
  9. [P]
    J. Phillips, Self-adjoint Fredholm operators and spectral flow, Canad. Math. Bull. 39 (1996), 460–467.zbMATHMathSciNetGoogle Scholar
  10. [W]
    C. Wahl, On the noncommutative spectral flow, J. Ramanujan Math. Soc. 22 (2007), 135–187.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Charlotte Wahl
    • 1
  1. 1.Leibniz-ArchivHannoverGermany

Personalised recommendations