Artemisinin — an innovative cornerstone for anti-malaria therapy

  • Thomas Kuhn 
  • Ying Wang 
Part of the Progress in Drug Research book series (PDR, volume 66)


Artemisinin-based Combination Therapies (ACT) are recommended by the World Health Organization (WHO) to treat especially multidrug resistant forms of malaria, as currently used medications have become increasingly ineffective. In this chapter, the discovery of artemisinin from Traditional Chinese Medicine and its further development to ACT are reviewed. It is highlighted how the complex supply chain to the naturally occurring endoperoxide artemisinin, required to produce ACT-based drugs, was established; thus addressing the significant therapeutic needs and high demands for the medication.


Supply Chain Antimalarial Drug ARTESU NATE Aflatoxin Contamination ARTEMETHER LUMEFANTRINE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    www.nobelprice.orgGoogle Scholar
  2. 2.
    www.rollbackmalaria.orgGoogle Scholar
  3. 3.
    www.theglobalfund.orgGoogle Scholar
  4. 4.
    Butler A, Hensman T (2000) Drugs for the fever. Educ Chem 37(6): 151Google Scholar
  5. 5.
    Editorial Office (2007) Chinese inventors who saved the lives of 500 million people. Global People 25(5): 15–16Google Scholar
  6. 6.
    Li Y, Wu Y (2003) An over four millennium story behind qinghaosu (artemisinin) — a fantastic antimalarial drug from a traditional Chinese herb. Curr Med Chem 10: 2197–2230PubMedCrossRefGoogle Scholar
  7. 7.
    Lu Y (2007) Tu Youyou, changing the world with a medicinal plant. Global People 25(5): 17–18Google Scholar
  8. 8.
    Hsu E (2006) Reflections on the ‘discovery’ of the antimalarial qinghao. Br J Clin Pharmacol 66(6): 666–670CrossRefGoogle Scholar
  9. 9.
    Charles D, Cebert E, Simon J (1991) Characterization of the essential oils of Artemisia annua L. J Ess Oil Res 3: 33–39Google Scholar
  10. 10.
    Woerdenbag H, Pras N, Chan N, Bang B, Bos R, van Uden W, Van PY, Boi N, Batterman S, Lugt C (1994) Artemisinin, related sesquiterpenes, and essential oil in Artemisia annua during a vegetation period in Vietnam. Planta Med 60: 272–275PubMedCrossRefGoogle Scholar
  11. 11.
    Coordinating Group for Research on the Structure of Qing Hau Su (1977) Coordination research on the structure of qinghaosu. Kexue Tongbao (Chinese Edition) 22(3): 142Google Scholar
  12. 12.
    Haynes R (2006) From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Topics Med Chem 6: 509–537CrossRefGoogle Scholar
  13. 13.
    Delabays N, Simonnet X, Gaudin M (2001) The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. Curr Med Chem 8: 1795–1801PubMedGoogle Scholar
  14. 14.
    Delabays N (1997) Biologie de la reproduction chez l’Artemisia annua L. et génétique de la production en artémisinine — Contribution à la domestication et à l’amélioration génétique de l’espèce. Thèse de doctorat. Faculté des Sciences de l’Université de LausanneGoogle Scholar
  15. 15.
    Acton N, Klayman D, Rollman I (1985) Reductive electrochemical HPLC assay for artemisinin (qinghaosu). Planta Med 51: 445–446PubMedCrossRefGoogle Scholar
  16. 16.
    Goozner M (2006) Beating malaria. The Scientist 20(12): 31Google Scholar
  17. 17.
    Robert A, Coppel Y, Meunier B (2002) Alkylation of heme by the antimalarial drug artemisinin. Chem Com 5: 414–415CrossRefGoogle Scholar
  18. 18.
    Efferth T, Davey M, Olbrich A, Rucker G, Gebhart E, Davey R (2002) Activity of drugs from traditional Chinese medicine toward sensitive and MDR1-or MRP1-overexpressing multidrug-resistant human CCRF-CEM leukemia cells. Blood Cells Mol Dis 28(2): 160–168PubMedCrossRefGoogle Scholar
  19. 19.
    Schmid G, Hofheinz W (1983) Total synthesis of qinghaosu. J Am Chem Soc 105: 624–625CrossRefGoogle Scholar
  20. 20.
    Acton N, Roth R (1992) On the conversion of dihydroartemisinic acid into artemisinin. J Org Chem 57: 3610–3614CrossRefGoogle Scholar
  21. 21.
    Lapkin A, Plucinski P, Cuthler M (2006) Comparative assessment of technologies for extraction of artemisinin. J Nat Prod 69: 1653–1664PubMedCrossRefGoogle Scholar
  22. 22. Scholar
  23. 23.
    Thayer A (2005) Fighting malaria. Chem Eng News 83(43): 69–82Google Scholar
  24. 24.
    Rosenthal P (2003) Antimalarial drug discovery: old and new approaches. J Exp Biol 206: 3735–3744PubMedCrossRefGoogle Scholar
  25. 25.
    Olliaro P, Taylor W (2004) Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria. J Postgrad Med 50: 40–44PubMedGoogle Scholar
  26. 26.
    www.malariaandhealth.comGoogle Scholar
  27. 27.
    www.mediplant.chGoogle Scholar
  28. 28.
    Kumar S, Gupta S, Singh P, Bajpai P, Gupta M, Singh D, Gupta A, Ram G, Shasany A, Sharma S (2004) High yields of artemisinin by multi-harvest of Artemisia annua crops. Ind Crops and Prod 19: 77–90CrossRefGoogle Scholar
  29. 29.
    Duke S, Vaughn K, Croom Jr E, Elsohly H (1987) Artemisinin, a constituent of annual wormwood (A. annua), is a selective phytotoxin. Weed Sci 35: 499–505Google Scholar
  30. 30.
    Chen P, Leather G, Klayman D (1987) Allelopathic effect of artemisinin and its related compounds from A. annua. Plant Physiol 83: 406Google Scholar
  31. 31.
    Namdeo A, Mahadik K, Kadam S (2006) Antimalaria drug-Artemisia annua. Pharmacognosy Magazine 2(6): 106–111Google Scholar
  32. 32.
    Roth R, Acton N (1989) A simple conversion of artemisinic acid into artemisinin. J Nat Prod 52(5): 1183–1185PubMedCrossRefGoogle Scholar
  33. 33.
    Jung M, ElSohly H, Croom Jr E (1986) Practical conversion of artemisinic acid into desoxyartemisinin. J Org Chem 51: 5417–5419CrossRefGoogle Scholar
  34. 34.
    Covello P, Teoh K, Polichuk D, Reed D, Nowak G (2007) Functional genomics and the biosynthesis of artemisinin. Phytochemistry 68(14): 1864–1871PubMedCrossRefGoogle Scholar
  35. 35. Scholar
  36. 36. Scholar
  37. 37.
    Ro D, Paradise E, Ouellet M, Fisher K, Newman K, Ndungu J, Ho K, Eachus R, Ham R, Kirby J et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943PubMedCrossRefGoogle Scholar
  38. 38.
    Boehm M, Fünfschilling P, Krieger M, Kuesters E, Struber F (2007) An improved manufacturing process for the antimalaria drug Coartem, Part 1. Org Process R&D 11: 336–340CrossRefGoogle Scholar
  39. 39.
    Beutler U, Fünfschilling P, Steinkemper A (2007) An improved manufacturing process for the antimalaria drug Coartem, Part 2. Org Process R&D 11: 341–345CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel (Switzerland) 2007

Authors and Affiliations

  • Thomas Kuhn 
    • 1
  • Ying Wang 
    • 2
  1. 1.Global Chemical OperationsSwitzerland
  2. 2.Natural Product Unit, Novartis Institutes for Biomedical ResearchNovartis Pharma AGBaselSwitzerland

Personalised recommendations