Ascomycete derivative to MS therapeutic: S1P receptor modulator FTY720

  • Peter C. Hiestand
  • Martin Rausch
  • Daniela Piani Meier
  • Carolyn A. Foster
Part of the Progress in Drug Research book series (PDR, volume 66)


Fingolimod (FTY720) represents the first in a new class of immune-modulators whose target is sphingosine-1-phosphate (S1P) receptors. It was first identified by researchers at Kyoto University and Yoshitomi Pharmaceutical as a chemical derivative of the ascomycete metabolite ISP-1 (myriocin). Unlike its natural product parent, FTY720 does not interfere with sphingolipid biosynthesis. Instead, its best characterized mechanism of action upon in vivo phosphorylation, leading to the active principle FTY720-P, is the rapid and reversible inhibition of lymphocyte egress from peripheral lymph nodes. As a consequence of S1P1 receptor internalization, tissue-damaging T-cells can not recirculate and infiltrate sites of inflammation such as the central nervous system (CNS). Furthermore, FTY720-P modulation of S1P receptor signaling also enhances endothelial barrier function. Due to its mode of action, FTY720 effectively prevents transplant rejection and is active in various autoimmune disease models. The most striking efficacy is in the multiple sclerosis (MS) model of experimental autoimmune encephalomyelitis, which has now been confirmed in the clinic. FTY720 demonstrated promising results in Phase II trials and recently entered Phase III in patients with relapsing MS. Emerging evidence suggests that its efficacy in the CNS extends beyond immunomodulation to encompass other aspects of MS pathophysiology, including an influence on the blood-brain-barrier and glial repair mechanisms that could ultimately contribute to restoration of nerve function. FTY720 may represent a potent new therapeutic modality in MS, combined with the benefit of oral administration.


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis NATALI ZUMAB Receptor Modulator Experimental Allergic Encephalomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis — the plaque and its pathogenesis. N Engl J Med 354: 942–955PubMedGoogle Scholar
  2. 2.
    Lassmann H (2005) Mechanisms of multiple sclerosis. Drug Discov Today Dis Mech 2: 447–452Google Scholar
  3. 3.
    Meinl E, Krumbholz M, Hohlfeld R (2006) B lineage cells in the inflammatory central nervous system environment: Migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol 59: 880–892PubMedGoogle Scholar
  4. 4.
    Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7: 932–941PubMedGoogle Scholar
  5. 5.
    Charil A, Yousry TA, Rovaris M, Barkhof F, De Stefano N, Fazekas F, Miller DH, Montalban X, Simon JH, Polman C et al (2006) MRI and the diagnosis of multiple sclerosis: expanding the concept of “no better explanation”. Lancet Neurol 5: 841–85PubMedGoogle Scholar
  6. 6.
    Neuhaus O, Archelos JJ, Hartung HP (2003) Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci 24: 131–138PubMedGoogle Scholar
  7. 7.
    Hohlfeld R, Wekerle H (2005) Drug Insight: using monoclonal antibodies to treat multiple sclerosis. Nat Clin Pract Neurol 1: 34–44PubMedGoogle Scholar
  8. 8.
    Marrie RA, Rudick RA (2006) Drug Insight: interferon treatment in multiple sclerosis. Nat Clin Pract Neurol 2: 34–44Google Scholar
  9. 9.
    Kluepfel D, Bagli J, Baker H, Charest MP, Kudelski A (1972) Myriocin, a new antifungal antibiotic from Myriococcum albomyces. J Antibiot 25: 109–115PubMedGoogle Scholar
  10. 10.
    St-Jacques M (1973) Elucidation of structure and stereochemistry of myriocin. A novel antifungal antibiotic. J Org Chem 38: 1253–1260PubMedGoogle Scholar
  11. 11.
    Fujita T, Ikumoto T, Sasaki S, Okumoto T, Chiba K (1993) Immunosuppressant. United States Patent 5219884, 15 June 1993Google Scholar
  12. 12.
    Fujita T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S, Toyama R, Chiba K, Hoshino Y, Okumoto T (1994) Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J Antibiot 47: 208–215PubMedGoogle Scholar
  13. 13.
    Yoshikawa M, Yokokawa Y, Okuno Y, Murakami N (1994) Total synthesis of a novel immunosuppressant, myriocin (thermozymocidin, ISP-1), and Z-myriocin. Chem Pharm Bull (Tokyo) 42: 994–996PubMedGoogle Scholar
  14. 14.
    Kiuchi M, Adachi K, Kohara T, Minoguchi M, Hanano T, Aoki Y, Mishina T, Arita M, Nakao N, Ohtsuki M et al (2000) Synthesis and immunosuppressive activity of 2-substituted 2-aminopropane-1,3-diols and 2-aminoethanols. J Med Chem 43: 2946–2961PubMedGoogle Scholar
  15. 15.
    Miyake Y, Kozutsumi Y, Nakamura S, Fujita T, Kawasaki T (1995) Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun 211: 396–403PubMedGoogle Scholar
  16. 16.
    Chen JK, Lane WS, Schreiber SL (1999) The identification of myriocin-binding proteins. Chem Biol 6: 221–235PubMedGoogle Scholar
  17. 17.
    Solomon JC, Sharma K, Wei LX, Fujita T, Shi YF (2003) A novel role for sphingolipid intermediates in activation-induced cell death in T cells. Cell Death Differ 10: 193–202PubMedGoogle Scholar
  18. 18.
    Adachi K, Kohara T, Nakao N, Arita M, Chiba K, Mishina T, Sasaki S, Fujita T (1995) Design, synthesis, and structure-activity relationships of 2-substituted-2-amino-1,3-propanediols: discovery of a novel immunosuppressant, FTY720. Bioorg Med Chem Lett 5: 853–856Google Scholar
  19. 19.
    Fujita T, Hirose R, Yoneta M, Sasaki S, Inoue K, Kiuchi M, Hirase S, Chiba K, Sakamoto H, Arita M (1996) Potent immunosuppressants, 2-Alkyl-2-aminopropane-1,3-diols. J Med Chem 39: 4451–4459PubMedGoogle Scholar
  20. 20.
    Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, Thornton R, Shei G-J, Card D, Keohane C et al (2002) Alteration of lymphocyte trafficking by sphingosine 1-phosphate receptor agonists. Science 296: 346–349PubMedGoogle Scholar
  21. 21.
    Brinkmann V, Lynch KR (2002) FTY720: targeting G-protein-coupled receptors for sphingosine 1-phosphate in transplantation and autoimmunity. Curr Opin Immunol 14: 569–575PubMedGoogle Scholar
  22. 22.
    Im DS (2003) Linking Chinese medicine and G-protein-coupled receptors. Trends Pharmacol Sci 24: 2–4PubMedGoogle Scholar
  23. 23.
    Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5: 560–570PubMedGoogle Scholar
  24. 24.
    Chiba K, Matsuyuki H, Maeda Y, Sugahara K (2006) Role of sphingosine 1-phosphate receptor type 1 in lymphocyte egress from secondary lymphoid tissues and thymus. Cell Mol Immunol 3: 11–19PubMedGoogle Scholar
  25. 25.
    Gardell SE, Dubin AE, Chun J (2006) Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 12: 65–75PubMedGoogle Scholar
  26. 26.
    Yopp AC, Ledgerwood LG, Ochando JC, Bromberg JS (2006) Sphingosine 1-phosphate receptor modulators: a new class of immunosuppressants. Clin Transplant 20: 788–795PubMedGoogle Scholar
  27. 27.
    Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P et al (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277: 21453–21457PubMedGoogle Scholar
  28. 28.
    Hanessian S, Charron G, Billich A, Guerini D (2007) Constrained azacyclic analogues of the immunomodulatory agent FTY720 as molecular probes for sphingosine 1-phosphate receptors. Bioorg Med Chem Lett 17: 491–494PubMedGoogle Scholar
  29. 29.
    Billich A, Bornancin F, Dévay P, Mechtcheriakova D, Urtz N, Baumruker T (2003) Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J Biol Chem 278: 47408–47415PubMedGoogle Scholar
  30. 30.
    Paugh SW, Payne SG, Barbour SE, Milstien S, Spiegel S (2003) The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett 554: 189–193PubMedGoogle Scholar
  31. 31.
    Sanchez T, Estrada-Hernandez T, Paik J-H, Wu M-T, Venkataraman K, Brinkmann V, Claffey K, Hla T (2003) Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J Biol Chem 278: 47281–47290PubMedGoogle Scholar
  32. 32.
    Kharel Y, Lee S, Snyder AH, Sheasley-O’Neill SL, Morris MA, Setiady Y, Zhu R, Zigler MA, Burcin TL, Ley K et al (2005) Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720. J Biol Chem 280: 36865–36872PubMedGoogle Scholar
  33. 33.
    Zemann B, Kinzel B, Müller M, Reuschel R, Mechtcheriakova D, Urtz N, Bornancin F, Baumruker T, Billich A (2006) Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 107: 1454–1458PubMedGoogle Scholar
  34. 34.
    Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, van Echten-Deckert G, Hajdu R, Rosenbach M, Keohane CA, Mandala S et al (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279: 52487–52492PubMedGoogle Scholar
  35. 35.
    Rosen H, Alfonso C, Surh CD, McHeyzer-Williams MG (2003) Rapid induction of medullary thymocyte phenotypic maturation and egress inhibition by nanomolar sphingosine 1-phosphate receptor agonist. Proc Natl Acad Sci USA 100: 10907–10912PubMedGoogle Scholar
  36. 36.
    Burkhart C, Heusser C, Morris RE, Raulf F, Weckbecker G, Weitz-Schmidt G, Welzenbach K (2004) Pharmacodynamics in the development of new immunosuppressive drugs. Ther Drug Monit 26: 588–592PubMedGoogle Scholar
  37. 37.
    Pinschewer DD, Ochsenbein AF, Odermatt B, Brinkmann V, Hengartner H, Zinkernagel RM (2000) FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion, and memory. J Immunol 164: 5761–5770PubMedGoogle Scholar
  38. 38.
    Brinkmann V, Chen S, Feng L, Pinschewer D, Nikolova Z, Hof R (2001) FTY720 alters lymphocyte homing and protects allografts without inducing general immunosuppression. Transplant Proc 33: 530–531PubMedGoogle Scholar
  39. 39.
    Diaz-Romero J, Vogt G, Weckbecker G (2001) Coexpression of CD4 and CD8a on rat T-cells in whole blood: a sensitive marker for monitoring T-cell immunosuppressive drugs. J Immunol Methods 254: 1–12PubMedGoogle Scholar
  40. 40.
    Habicht A, Clarkson MR, Yang J, Henderson J, Brinkmann V, Fernandes S, Jurewicz M, Yuan X, Sayegh MH (2006) Novel insights into the mechanism of action of FTY720 in a transgenic model of allograft rejection: implications for therapy of chronic rejection. J Immunol 176: 36–42PubMedGoogle Scholar
  41. 41.
    Kabashima K, Haynes NM, Xu Y, Nutt SL, Allende ML, Proia RL, Cyster JG (2006) Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J Exp Med 203: 2683–2690PubMedGoogle Scholar
  42. 42.
    Chiba K, Yanagawa Y, Masubuchi Y, Kataoka H, Kawaguchi T, Ohtsuki M, Hoshino Y (1998) FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J Immunol 160: 5037–5044PubMedGoogle Scholar
  43. 43.
    Quesniaux VFJ, Menninger K, Kunkler A, Vedrine C, Bernhard M, Hedinger R, Kraus G, Schuurman HJ (2000) The novel immunosuppressant FTY720 induces peripheral lymphodepletion of both T-and B-cells in cynomolgus monkeys when given alone, with Cyclosporine Neoral® or with RAD. Transpl Immunol 8: 177–187PubMedGoogle Scholar
  44. 44.
    Li H, Meno-Tetang GML, Chiba K, Arima N, Heining P, Jusko WJ (2002) Pharmacokinetics and cell trafficking dynamics of 2-amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol hydrochloride (FTY720) in cynomolgus monkeys after single oral and intravenous doses. J Pharmacol Exp Ther 301: 519–526PubMedGoogle Scholar
  45. 45.
    Budde K, Schmouder RL, Nashan B, Brunkhorst R, Lücker PW, Mayer T, Brookman L, Nedelman J, Skerjanec A, Böhler T et al (2003) Pharmacodynamics of single doses of the novel immunosuppressant FTY720 in stable renal transplant patients. Am J Transplant 3: 846–854PubMedGoogle Scholar
  46. 46.
    Kovarik JM, Schmouder R, Barilla D, Riviere G-J, Wang Y, Hunt T (2004) Multiple-dose FTY720: tolerability, pharmacokinetics, and lymphocyte responses in healthy subjects. J Clin Pharmacol 44: 532–537PubMedGoogle Scholar
  47. 47.
    Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427: 355–360PubMedGoogle Scholar
  48. 48.
    Lo CG, Xu Y, Proia RL, Cyster JG (2005) Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J Exp Med 201: 291–301PubMedGoogle Scholar
  49. 49.
    Hofmann M, Brinkmann V, Zerwes HG (2006) FTY720 preferentially depletes naive T cells from peripheral and lymphoid organs. Int Immunopharmacol 6: 1902–1910PubMedGoogle Scholar
  50. 50.
    Bolton C, Flower RJ (1989) The effects of the anti-glucocorticoid RU 38486 on steroid-mediated suppression of experimental allergic encephalomyelitis (EAE) in the Lewis rat. Life Sci 45: 97–104PubMedGoogle Scholar
  51. 51.
    McVerry BJ, Garcia JGN (2005) In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cell Signal 17: 131–139PubMedGoogle Scholar
  52. 52.
    Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86: 279–367PubMedGoogle Scholar
  53. 53.
    Brinkmann V, Cyster JG, Hla T (2004) FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 4: 1019–1025PubMedGoogle Scholar
  54. 54.
    LaMontagne K, Littlewood-Evans A, Schnell C, O’Reilly T, Wyder L, Sanchez T, Probst B, Butler J, Wood A, Liau G et al (2006) Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 66: 221–231PubMedGoogle Scholar
  55. 55.
    Peng X, Hassoun PM, Sammani S, McVerry BJ, Burne MJ, Rabb H, Pearse D, Tuder RM, Garcia JGN (2004) Protective effects of sphingosine 1-phosphate in murine endotoxininduced inflammatory lung injury. Am J Respir Crit Care Med 169: 1245–1251PubMedGoogle Scholar
  56. 56.
    Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5: 261–270PubMedGoogle Scholar
  57. 57.
    Brinkmann V, Baumruker T (2006) Pulmonary and vascular pharmacology of sphingosine 1-phosphate. Curr Opin Pharmacol 6: 1–7Google Scholar
  58. 58.
    Sanna MG, Wang S-K, Gonzalez-Cabrera PJ, Don A, Marsolais D, Matheu MP, Wei SH, Parker I, Jo E, Cheng W-C et al (2006) Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat Chem Biol 2: 434–441PubMedGoogle Scholar
  59. 59.
    Ehrlich P (1885) Das Sauerstoff-Bedürfniss des Organismus: Eine farbenanalytische Studie. August Hirschwald, BerlinGoogle Scholar
  60. 60.
    Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16: 1–13PubMedGoogle Scholar
  61. 61.
    Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57: 173–185PubMedGoogle Scholar
  62. 62.
    Abbott JN, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7: 41–53PubMedGoogle Scholar
  63. 63.
    Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, Raine CS, Brosnan CF, John GR (2006) IL-1β regulates blood-brain barrier permeability via reactivation of the hypoxiaangiogenesis program. J Immunol 177: 5574–5584PubMedGoogle Scholar
  64. 64.
    Chiba K (2005) FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol Ther 108: 308–319PubMedGoogle Scholar
  65. 65.
    Suzuki S, Enosawa S, Kakefuda T, Shinomiya T, Amari M, Naoe S, Hoshino Y, Chiba K (1996) A novel immunosuppressant, FTY720, with a unique mechanism of action, induces long-term graft acceptance in rat and dog allotransplantation. Transplantation 61: 200–205PubMedGoogle Scholar
  66. 66.
    Yanagawa Y, Sugahara K, Kataoka H, Kawaguchi T, Masubuchi Y, Chiba K (1998) FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. II. FTY720 prolongs skin allograft survival by decreasing T cell infiltration into grafts but not cytokine production in vivo. J Immunol 160: 5493–5499PubMedGoogle Scholar
  67. 67.
    Fu F, Hu S, Deleo J, Li S, Hopf C, Hoover J, Wang S, Brinkmann V, Lake P, Shi VC (2002) Long-term islet graft survival in streptozotocin-and autoimmune-induced diabetes models by immunosuppressive and potential insulinotropic agent FTY720. Transplantation 73: 1425–1430PubMedGoogle Scholar
  68. 68.
    Peñuelas-Rivas G, Domínguez-Perles R, Brinkmann V, del Rio ML, Muñoz-Luna A, Ramírez-Romero P, Parrilla-Paricio P, Rodríguez-Barbosa JI (2005) FTY720 inhibits TH1-mediated allogeneic humoral immune response. Transplant Proc 37: 4124–4126PubMedGoogle Scholar
  69. 69.
    Matsuura M, Imayoshi T, Okumoto T (2000) Effect of FTY720, a novel immunosuppressant, on adjuvant-and collagen-induced arthritis in rats. Int J Immunopharmacol 22: 323–331PubMedGoogle Scholar
  70. 70.
    Idzko M, Hammar H, van Nimwegen M, Kool M, Müller T, Soullié T, Willart MAM, Hijdra D, Hoogsteden HC, Lambrecht BN (2006) Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest 116: 2935–2944PubMedGoogle Scholar
  71. 71.
    Kohno T, Tsuji T, Hirayama K, Watabe K, Matsumoto A, Kohno T, Fujita T (2004) A novel immunomodulator, FTY720, prevents spontaneous dermatitis in NC/Nga mice. Biol Pharm Bull 27: 1392–1396PubMedGoogle Scholar
  72. 72.
    Yang Z, Chen M, Fialkow LB, Ellett JD, Wu R, Brinkmann V, Nadler JL, Lynch KR (2003) The immune modulator FYT720 prevents autoimmune diabetes in nonobese diabetic mice. Clin Immunol 107: 30–35PubMedGoogle Scholar
  73. 73.
    Popovic J, Kover KL, Moore WV (2004) The effect of immunomodulators on prevention of autoimmune diabetes is stage dependent: FTY720 prevents diabetes at three different stages in the diabetes-resistant biobreeding rat. Pediatr Diabetes 5: 3–9PubMedGoogle Scholar
  74. 74.
    Maki T, Gottschalk R, Ogawa N, Monaco AP (2005) Prevention and cure of autoimmune diabetes in nonobese diabetic mice by continuous administration of FTY720. Transplantation 79: 1051–1055PubMedGoogle Scholar
  75. 75.
    Kohno T, Tsuji T, Hirayama K, Iwatsuki R, Hirose M, Watabe K, Yoshikawa H, Kohno T, Matsumoto A, Fujita T et al (2005) A novel immunomodulator, FTY720, prevents development of experimental autoimmune myasthenia gravis in C57BL/6 mice. Biol Pharm Bull 28: 736–739PubMedGoogle Scholar
  76. 76.
    Kitabayashi H, Isobe M, Watanabe N, Suzuki J, Yazaki Y, Sekiguchi M (2000) FTY720 prevents development of experimental autoimmune myocarditis through reduction of circulating lymphocytes. J Cardiovasc Pharmacol 35: 410–416PubMedGoogle Scholar
  77. 77.
    Miyamoto T, Matsumori A, Hwang MW, Nishio R, Ito H, Sasayama S (2001) Therapeutic effects of FTY720, a new immunosuppressive agent, in a murine model of acute viral myocarditis. J Am Coll Cardiol 37: 1713–1718PubMedGoogle Scholar
  78. 78.
    Okazaki H, Hirata D, Kamimura T, Sato H, Iwamoto M, Yoshio T, Masuyama J, Fujimura A, Kobayashi E, Kano S et al (2002) Effects of FTY720 in MRL-lpr/lpr mice: therapeutic potential in systemic lupus erythematosus. J Rheumatol 29: 707–716PubMedGoogle Scholar
  79. 79.
    Hozumi Y, Kobayashi E, Miyata M, Fujimura A (1999) Immunotherapy for experimental rat autoimmune thyroiditis using a novel immunosuppressant, FTY720. Life Sci 65: 1739–1745PubMedGoogle Scholar
  80. 80.
    Kurose S, Ikeda E, Tokiwa M, Hikita N, Mochizuki M (2000) Effects of FTY720, a novel immunosuppressant, on experimental autoimmune uveoretinitis in rats. Exp Eye Res 70: 7–15PubMedGoogle Scholar
  81. 81.
    Budde K, Schütz M, Glander P, Peters H, Waiser J, Liefeldt L, Neumayer H-H, Böhler T (2006) FTY720 (fingolimod) in renal transplantation. Clin Transplant 20: 17–24PubMedGoogle Scholar
  82. 82.
    Ercolini AM, Miller SD (2006) Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. J Immunol 176: 3293–3298PubMedGoogle Scholar
  83. 83.
    Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129: 1953–1971PubMedGoogle Scholar
  84. 84.
    Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60: 12–21PubMedGoogle Scholar
  85. 85.
    Bolton C, Borel JF, Cuzner ML, Davison AN, Turner AM (1982) Immunosuppression by cyclosporin A of experimental allergic encephalomyelitis. J Neurol Sci 56: 147–153PubMedGoogle Scholar
  86. 86.
    Tanuma N, Shin T, Matsumoto Y (2000) Characterization of acute versus chronic relapsing autoimmune encephalomyelitis in DA rats. J Neuroimmunol 108: 171–180PubMedGoogle Scholar
  87. 87.
    Maier K, Kuhnert AV, Taheri N, Sättler MB, Storch MK, Williams SK, Bähr M, Diem R (2006) Effects of glatiramer acetate and interferon-beta on neurodegeneration in a model of multiple sclerosis: a comparative study. Am J Pathol 169: 1353–1364PubMedGoogle Scholar
  88. 88.
    Stefferl A, Brehm U, Storch M, Lambracht-Washington D, Bourquin C, Wonigeit K, Lassmann H, Linington C (1999) Myelin oligodendrocyte glycoprotein induces experimental autoimmune encephalomyelitis in the “resistant” Brown Norway rat: disease susceptibility Is determined by MHC and MHC-linked effects on the B cell response. J Immunol 163: 40–49PubMedGoogle Scholar
  89. 89.
    Chiba K, Adachi K (1997) FTY720. Drugs Future 22: 18–22Google Scholar
  90. 90.
    Fujino M, Funeshima N, Kitazawa Y, Kimura H, Amemiya H, Suzuki S, Li X-K (2003) Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther 305: 70–77PubMedGoogle Scholar
  91. 91.
    Rausch M, Hiestand P, Foster CA, Baumann DR, Cannet C, Rudin M (2004) Predictability of FTY720 efficacy in experimental autoimmune encephalomyelitis by in vivo macrophage tracking: Clinical implications for ultrasmall superparamagnetic iron oxideenhanced magnetic resonance imaging. J Magn Reson Imaging 20: 16–24PubMedGoogle Scholar
  92. 92.
    Webb M, Tham C-S, Lin F-F, Lariosa-Willingham K, Yu N, Hale J, Mandala S, Chun J, Rao TS (2004) Sphingosine 1-phosphate receptor agonists attenuate relapsing-remitting experimental autoimmune encephalitis in SJL mice. J Neuroimmunol 153: 108–121PubMedGoogle Scholar
  93. 93.
    Kataoka H, Sugahara K, Shimano K, Teshima K, Koyama M, Fukunari A, Chiba K (2005) FTY720, sphingosine 1-phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. Cell Mol Immunol 2: 439–448PubMedGoogle Scholar
  94. 94.
    Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, Moseley IF, Rudge P, McDonald WI (1990) Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113: 1477–1489PubMedGoogle Scholar
  95. 95.
    Katz D, Taubenberger JK, Cannella B, McFarlin DE, Raine CS, McFarland HF (1993) Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol 34: 661–669PubMedGoogle Scholar
  96. 96.
    Brück W, Bitsch A, Kolenda H, Brück Y, Stiefel M, Lassmann H (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42: 783–793PubMedGoogle Scholar
  97. 97.
    Soon D, Altmann DR, Fernando KT, Giovannoni G, Barkhof F, Polman CH, O’Connor P, Gray B, Panzara M, Miller DH (2007) A study of subtle blood brain barrier disruption in a placebo-controlled trial of natalizumab in relapsing remitting multiple sclerosis. J Neurol 254: 306–314PubMedGoogle Scholar
  98. 98.
    Hawkins CP, MacKenzie F, Tofts P, du Boulay EPGH, McDonald WI (1991) Patterns of blood-brain barrier breakdown in inflammatory demyelination. Brain 114: 801–810PubMedGoogle Scholar
  99. 99.
    Morrissey SP, Stodal H, Zettl U, Simonis C, Jung S, Kiefer R, Lassmann H, Hartung H-P, Haase A, Toyka KV (1996) In vivo MRI and its histological correlates in acute adoptive transfer experimental allergic encephalomyelitis. Quantification of inflammation and oedema. Brain 119: 239–248PubMedGoogle Scholar
  100. 100.
    Dousset V, Delalande C, Ballarino L, Quesson B, Seilhan D, Coussemacq M, Thiaudiére E, Brochet B, Canioni P, Caillé J-M (1999) In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn Reson Med 41: 329–333PubMedGoogle Scholar
  101. 101.
    Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M (2003) MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med 50: 309–314PubMedGoogle Scholar
  102. 102.
    Floris S, Blezer ELA, Schreibelt G, Döpp E, van der Pol SM, Schadee-Eestermans IL, Nicolay K, Dijkstra CD, de Vries HE (2004) Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 127: 616–627PubMedGoogle Scholar
  103. 103.
    De Stefano N, Battaglini M, Stromillo ML, Zipoli V, Bartolozzi ML, Guidi L, Siracusa G, Portaccio E, Giorgio A, Sorbi S et al (2006) Brain damage as detected by magnetization transfer imaging is less pronounced in benign than in early relapsing multiple sclerosis. Brain 129: 2008–2016PubMedGoogle Scholar
  104. 104.
    Berger C, Hiestand P, Kindler-Baumann D, Rudin M, Rausch M (2006) Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage. NMR Biomed 19: 101–107PubMedGoogle Scholar
  105. 105.
    Blezer ELA, Bauer J, Brok HPM, Nicolay K, ’t Hart BA (2006) Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis. NMR Biomed 20: 90–103Google Scholar
  106. 106.
    Kallmann BA, Fackelmann S, Toyka KV, Rieckmann P, Reiners K (2006) Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis. Mult Scler 12: 58–65PubMedGoogle Scholar
  107. 106a.
    Balatoni B, Storch MK, Swoboda EM, Schönborn V, Koziel A, Lambrou GN, Hiestand PC, Weissert R, Foster CA (2007) FTY720 sustains and restores neuronal function in MOGinduced experimental autoimmune encephalomyelitis. Brain Res Bull 74: 307–316PubMedGoogle Scholar
  108. 107.
    Meno-Tetang GML, Li H, Mis S, Pyszczynski N, Heining P, Lowe P, Jusko WJ (2006) Physiologically based pharmacokinetic modeling of FTY720 (2-amino-2[2-(-4-octylphe nyl)ethyl]propane-1,3-diol hydrochloride) in rats after oral and intravenous doses. Drug Metab Dispos 34: 1480–1487PubMedGoogle Scholar
  109. 108.
    Kappos L, Antel J, Comi G, Montalban X, O’Connor P, Polman CH, Haas T, Korn AA, Karlsson G, Radue EW for the FTY720 D2201 Study Group (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355: 1124–1140PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel (Switzerland) 2008

Authors and Affiliations

  • Peter C. Hiestand
    • 1
  • Martin Rausch
    • 1
  • Daniela Piani Meier
    • 1
  • Carolyn A. Foster
    • 2
  1. 1.Novartis Pharma AGBaselSwitzerland
  2. 2.Novartis Institutes for BioMedical ResearchViennaAustria

Personalised recommendations