Epothilones as lead structures for new anticancer drugs — pharmacology, fermentation, and structure-activity-relationships

  • Karl-Heinz Altmann
  • Klaus Memmert
Part of the Progress in Drug Research book series (PDR, volume 66)


Epothilones (Epo’s) A and B are naturally occurring microtubule-stabilizers, which inhibit the growth of human cancer cells in vitro at low nM or sub-nM concentrations. In contrast to taxol (paclitaxel, Taxol®) epothilones are also active against different types of multidrug-resistant cancer cell lines in vitro and against multidrug-resistant tumors in vivo. Their attractive preclinical profile has made epothilones important lead structures in the search for improved cytotoxic anticancer drugs and Epo B (EPO906, patupilone) is currently undergoing Phase III clinical trials. Numerous synthetic and semisynthetic analogs have been prepared since the absolute stereochemistry of epothilones was first disclosed in mid-1996 and their in vitro biological activity has been determined. Apart from generating a wealth of SAR information, these efforts have led to the identification of at least six compounds (in addition to Epo B), which are currently at various stages of clinical evaluation in humans. The most advanced of these compounds, Epo B lactam BMS-247550 (ixabepilone), has recently obtained FDA approval for the treatment of metastatic and advanced breast cancer. This chapter will first provide a summary of the basic features of the biological profile of Epo B in vitro and in vivo. This will be followed by a review of the processes that have been developed for the fermentative production of Epo B. The main part of the chapter will focus on the most relevant aspects of the epothilone SAR with regard to effects on tubulin polymerization, in vitro antiproliferative activity, and in vivo antitumor activity. Particular emphasis will be placed on work conducted in the authors’ own laboratories, but data from other groups will also be included. In a final section, the current status of those epothilone analogs undergoing clinical development will be briefly discussed.


Resistant Cell Line Lead Structure Tubulin Polymerization Cancer Cell Growth Inhibition Cervix Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56: 106–130PubMedGoogle Scholar
  2. 2.
    Capdeville R, Buchdunger E, Zimmermann J, Matter A (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev Drug Disc 1: 493–502Google Scholar
  3. 3.
    Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Rev Drug Disc 5: 835–844Google Scholar
  4. 4.
    Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nature Biotechnol 23: 1147–1157Google Scholar
  5. 5.
    Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Comm 333: 328–335PubMedGoogle Scholar
  6. 6.
    Lu MC (1995) Antimitotic agents. In: WO Foye (ed): Cancer chemotherapeutic agents. American Chemical Society, Washington DC, 345–368Google Scholar
  7. 7.
    Mekhail TM, Markman M (2002) Paclitaxel in cancer therapy. Exp Opin Pharmacother 3: 755–766Google Scholar
  8. 8.
    Obasaju C, Hudes GR (2001) Paclitaxel and docetaxel in prostate cancer. Hematology/Oncology Clinics of North America 15: 525–545PubMedGoogle Scholar
  9. 9.
    Hamel E (1996) Antimitotic natural products and their interaction with tubulin. Med Res Rev 16: 207–231PubMedGoogle Scholar
  10. 10.
    Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Ann Rev Med 48: 353–374PubMedGoogle Scholar
  11. 11.
    Prinz H (2002) Recent advances in the field of tubulin polymerization inhibitors. Exp Rev Anticancer Ther 2: 695–708Google Scholar
  12. 12.
    Altmann KH (2001) Microtubule-stabilizing agents: a growing class of important anticancer drugs. Curr Opin Chem Biol 5: 424–432PubMedGoogle Scholar
  13. 13.
    Miles DC (2002) Emerging microtubule stabilizing agents for cancer chemotherapy. Ann Rep Med Chem 37: 125–132Google Scholar
  14. 14.
    Altmann KH, Gertsch J (2007) Anticancer drugs from nature — natural products as a unique source of new microtubule-stabilizing agents. Nat Prod Rep 24: 327–357PubMedGoogle Scholar
  15. 15.
    Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277: 665–667PubMedGoogle Scholar
  16. 16.
    Höfle G, Reichenbach H (2005) Epothilone, a myxobacterial metabolite with promising antitumor activity. In: GM Cragg, DGI Kingston, DJ Newman (eds): Anticancer agents form natural products. Taylor & Francis, Boca Raton, FL, 413–450Google Scholar
  17. 17.
    Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H (1996) Epothilons A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria). Production, physico-chemical and biological properties. J Antibiotics 49: 560–563 (see also: G Höfle, N Bedorf, K Gerth, H Reichenbach, German Patent Disclosure, DE 4138042, 1993; Chem. Abstr. 120, 52841 (1993))Google Scholar
  18. 18.
    Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a Taxol-like mechanism of action. Cancer Res 55: 2325–2333PubMedGoogle Scholar
  19. 19.
    Hardt IH, Steinmetz H, Gerth K, Sasse F, Reichenbach H, Höfle G (2001) New natural epothilones from Sorangium cellulosum, Strains So ce90/B2 and So ce90/D13: Isolation, structure elucidation, and SAR studies. J Nat Prod 64: 847–856PubMedGoogle Scholar
  20. 20.
    Höfle G, Bedorf N, Steinmetz H, Schomburg D, Gerth K, Reichenbach H (1996) Antibiotics from gliding bacteria. 77. Epothilone A and B — novel 16-membered macrolides with cytotoxic activity: isolation, crystal structure, and conformation in solution. Angew Chem Int Ed 35: 1567–1569Google Scholar
  21. 21.
    Kowalski RJ, Giannakakou P, Hamel E (1997) Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol). J Biol Chem 272: 2534–2541PubMedGoogle Scholar
  22. 22.
    Altmann K-H, Wartmann M, O’Reilly T (2000) Epothilones and related structures — a new class of microtubule inhibitors with potent in vivo antitumor activity. Biochim Biophys Acta 1470: M79–M91PubMedGoogle Scholar
  23. 23.
    Wolff A, Technau A, Brandner G (1997) Epothilone A induces apoptosis in neuroblastoma cells with multiple mechanisms of drug resistance. Int J Onc 11: 123–126Google Scholar
  24. 24.
    Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS (1997) Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272: 17118–17125PubMedGoogle Scholar
  25. 25.
    Nicolaou KC, Roschangar F, Vourloumis D (1998) Chemical biology of epothilones. Angew Chem Int Ed 37: 2014–2045Google Scholar
  26. 26.
    Harris CR, Danishefsky SJ (1999) Complex target-oriented synthesis in the drug discovery process: a case history in the dEpoB series. J Org Chem 64: 8434–8456Google Scholar
  27. 27.
    Mulzer J, Martin HJ, Berger M (1999) Progress in the synthesis of chiral heterocyclic natural products: epothilone B and tartrolon B. J Heterocycl Chem 36: 1421–1436Google Scholar
  28. 28.
    Nicolaou KC, Ritzen A, Namoto K (2001) Recent developments in the chemistry, biology and medicine of the epothilones. JCS Chem Commun 1523–1535Google Scholar
  29. 29.
    Altmann KH (2004) The merger of and natural product synthesis and medicinal chemistry: on the chemistry and chemical biology of epothilones. Org Biomol Chem 2: 2137–2152PubMedGoogle Scholar
  30. 30.
    Watkins EB, Chittiboyina AG, Jung JC, Avery MA (2005) The epothilones and related analogues — A review of their syntheses and anti-cancer activities. Curr Pharm Des 11: 1615–1653PubMedGoogle Scholar
  31. 31.
    Watkins EB, Chittiboyina AG, Jung JC, Avery MA (2006) Recent developments in the syntheses of the epothilones and related analogues. Eur J Org Chem 18: 4071–4084Google Scholar
  32. 32.
    Wartmann M, Altmann KH (2002) The biology and medicinal chemistry of epothilones. Currr Med Chem Anti-Cancer Agents 2: 123–148Google Scholar
  33. 33.
    Altmann KH (2003) Epothilone B and its analogs — a new family of anticancer agents. Mini-Rev Med Chem 3: 149–158PubMedGoogle Scholar
  34. 34.
    Borzilleri RM, Vite GD (2003) Epothilones: new tubulin polymerization agents in preclinical and clinical development. Drugs of the Future 27: 1149–1163Google Scholar
  35. 35.
    Altmann KH (2005) Recent developments in the chemistry and biology of epothilones Curr Pharm Des 11: 1595–1613PubMedGoogle Scholar
  36. 36.
    Altmann KH, Pfeiffer B, Arseniyadis S, Pratt BA, Nicolaou KC (2007) The chemistry and biology of epothilones — The wheel keeps turning. ChemMedChem 2: 396–423PubMedGoogle Scholar
  37. 37.
    Chappell MD, Stachel SJ, Lee CB, Danishefsky SJ (2002) On the total synthesis and preliminary biological evaluations of 15(R) and 15(S) Aza-dEpoB: a mitsunobu inversion at C15 in pre-epothilone fragments. Org Lett 2: 1633–1636Google Scholar
  38. 38.
    Walsh CT, O’Connor S, Schneider TL (2003) Polyketide-nonribosomal peptide epothilone antitumor agents: the EpoA, B, C subunits. J Ind Microbiol Biotechnol 30: 448–455PubMedGoogle Scholar
  39. 39.
    He L, Orr GA, Horwitz SB (2001) Novel molecules that interact with microtubules and have functional activity similar to Taxol. Drug Discovery Today 6: 1153–1164PubMedGoogle Scholar
  40. 40.
    Altaha R, Fojo T, Reed E, Abraham J (2002) Epothilones: A novel class of non-taxane microtubule-stabilizing agents. Curr Pharm Des 8: 1707–1712PubMedGoogle Scholar
  41. 41.
    Altmann KH, Bold G, Caravatti G, End N, Flörsheimer A, Guagnano V, O’Reilly T, Wartmann M (2000) Epothilones and their analogs — potential new weapons in the fight against cancer. Chimia 54: 612–621Google Scholar
  42. 42.
    Buey RM, Diaz JF, Andreu JM, O’Brate A, Giannakakou P, Nicolaou KC, Sasmal PK, Ritzén A, Namoto K (2004) Interactions of epothilone analogs with the paclitaxel binding site: relationship between binding affinity, microtubule stabilization, and cytotoxicity. Chem & Biol 11: 225–236Google Scholar
  43. 43.
    Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L (1996) Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exist and apoptotic cell death. Cancer Res 56: 816–825PubMedGoogle Scholar
  44. 44.
    Lichtner RB, Rotgeri A, Bunte T, Buchmann B, Hoffmann J, Schwede W, Skuballa W, Klar U (2001) Subcellular distribution of epothilones in human tumor cells. Proc Natl Acad Sci USA 98: 11743–11748PubMedGoogle Scholar
  45. 45.
    Jordan MA (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem: Anti-Cancer Agents 2: 1–14Google Scholar
  46. 46.
    Kamath K, Jordan MA (2003) Suppression of microtubule dynamics by epothilone B is associated with mitotic arrest. Cancer Res 63: 6026–6031PubMedGoogle Scholar
  47. 47.
    Chen JGC, Horwitz SM (2002) Differential mitotic responses to microtubule-stabilizing and-destabilizing drugs. Cancer Res 14: 1935–1938Google Scholar
  48. 48.
    Chen JGC, Yang C-PHY, Cammer M, Horwitz SM (2003) Gene expression and mitotic exit induced by microtubule-stabilizing drugs. Cancer Res 15: 7891–7899Google Scholar
  49. 49.
    Garraway LA, Chabner B (2002) MDR1 inhibition: less resistance or less relevance? Eur J Cancer 38: 2337–2340PubMedGoogle Scholar
  50. 50.
    Nettles JH, Li HL, Cornett B, Krahn JM, Snyder JP, Downing KH (2004) The binding mode of epothilone A on α,β-tubulin by electron crystallography. Science 305: 866–869PubMedGoogle Scholar
  51. 51.
    Nogales E, Wolf SG, Downing KH (1998) Structure of the αβ tubulin dimer by electron crystallography. Nature 391: 199–203PubMedGoogle Scholar
  52. 52.
    Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T (2000) A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 97: 2904–2909PubMedGoogle Scholar
  53. 53.
    He L, Yang CP, Horwitz SB (2001) Mutations in β-tubulin map to domains involved in regulation of microtubule stability in epothilone-resistant cell lines. Mol Cancer Ther 1: 3–10PubMedGoogle Scholar
  54. 54.
    Yang CPH, Verdier-Pinard P, Wang F, Lippaine-Horvath E, He LF, Li DS, Höfle G, Ojima I, Orr GA, Horwitz SB (2005) A highly epothilone B-resistant A549 cell line with mutations in tubulin that confer drug dependence. Mol Cancer Ther 4: 987–995PubMedGoogle Scholar
  55. 55.
    Verrills NM, Flemming CL, Liu M, Ivery MT, Cobon GS, Norris MD, Haber M, Kavallaris M (2003) Microtubule alterations and mutations induced by desoxyepothilone B: Implications for drug-target interactions. Chem Biol 10: 597–607PubMedGoogle Scholar
  56. 56.
    Cabral F, Barlow SB (1991) Resistance to antimitotic agents as genetic probes of microtubule structure and function. Pharmacol Ther 52: 159–171PubMedGoogle Scholar
  57. 57.
    Su DS, Balog A, Meng D, Bertinato P, Danishefsky SJ, Zheng YH, Chou TC, He L, Horwitz SB (1997) Structure-activity relationships of the epothilones and the first in vivo comparison with paclitaxel. Angew Chem Int Ed 36: 2093–2096Google Scholar
  58. 58.
    Chou TC, Zhang XG, Balog A, Su DS, Meng D, Savin K, Bertino JR, Danishefsky SJ (1998) Desoxyepothilone B: an efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc Natl Acad Sci USA 95: 9642–9647PubMedGoogle Scholar
  59. 59.
    O’Reilly T, McSheehy PMJ, Wenger F, Hattenberger M, Muller M, Vaxelaire J, Altmann KH, Wartmann M (2005) EPO906 (epothilone B) is active in vivo against experimental prostate tumors. Prostate 65: 231–240PubMedGoogle Scholar
  60. 60.
    Rothermel J, Wartmann M, Chen T, Hohneker T (2003) EPO906 (epothilone B): a promising novel microtubule stabilizer. Seminars in Oncology 30(Suppl 6): 51–55PubMedGoogle Scholar
  61. 61.
    Pietras K, Stumm M, Hubert M, Buchdunger E, Rubin K, Heldin C-K, McSheehy P, Wartmann M, Oestman A (2003) STI571 enhances the therapeutic index of epothilone B by a tumor-selective increase of drug uptake. Clin Cancer Res 9: 3779–3787PubMedGoogle Scholar
  62. 62.
    Klar U, Buchmann B, Schwede, W, Skuballa W, Hoffmann J, Lichtner, RB (2006) Total synthesis and antitumor activity of ZK-EPO: The first fully synthetic epothilone in clinical development. Angew Chem Int Ed 45: 7942–7948Google Scholar
  63. 63.
    Reichenbach H, Höfle G (1993) Production of bioactive secondary metabolites. In: M Dworkin, D Kaiser (eds): Myxobacteria II. American Society for Microbiology, Washington, DC, 347–397Google Scholar
  64. 64.
    Reichenbach H, Höfle G (1999) Myxobacteria as producers of secondary metabolites. In: S Grabley, R Thiericke (eds): Drug Discovery from Nature. Springer Verlag, Berlin, Heidelberg, 149–179Google Scholar
  65. 65.
    Gerth K, Steinmetz H, Höfle G, Reichenbach H (2002) Studies on the biosynthesis of epothilones: hydroxylation of Epo A and B to epothilones E and F. J Antibiotics 55: 41–45Google Scholar
  66. 66.
    Frykman S, Tsuruta H, Galazzo J, Licari P (2006) Characterization of product capture resin during microbial cultivations. J Ind Microbiol Biotechnol 33: 445–453PubMedGoogle Scholar
  67. 67.
    Molnar I, Schupp T, Ono M, Zirkle R, Milnamow M, Novok-Thompson B, Engel N, Toupet C, Stratmann A, Ligon J et al (2000) The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem Biol 7: 97–109PubMedGoogle Scholar
  68. 68.
    Tang L, Shah S, Chung L, Katz L, Khosla C, Julien B (2000) Cloning and heterologous expression of the epothilone gene cluster. Science 287: 640–642PubMedGoogle Scholar
  69. 69.
    Gerth K, Steinmetz H, Höfle G, Reichenbach H (2000) Studies on the biosynthesis of epothilones: the biosynthetic origin of the carbon skeleton. J Antibiotics 53: 1373–1377Google Scholar
  70. 70.
    Gerth K, Steinmetz H, Höfle G, Reichenbach H (2001) Studies on the biosynthesis of epothilones: the PKS and epothilone C/D monooxygenase. J Antibiotics 54: 144–148Google Scholar
  71. 71.
    Frykman S, Tsuruta H, Lau J, Regentin R, Ou S, Reeves C, Carney J, Santi D, Licari P (2002) Modulation of epothilone analog production through media design. J Ind MicrobiolBiotechnol 28: 17–20Google Scholar
  72. 72.
    Höfle G, Bedorf N, Gerth K, Reichenbach H (1993) Epothilones, process for preparing the same and their use as medicaments and as plant protecting agents. Int Patent Application WO93/10121Google Scholar
  73. 73.
    Benigni D, Stankavage R, Chiang S, Hou H, Eagan B, Gu D, Hou D, Mintzmyer L, Tully T, Davis B et al (2004) Methods for the preparation, isolation and purification of epothilone B, and x-ray crystal structures of epothilone B. Int Patent Application WO2004/026254Google Scholar
  74. 74.
    Hofmann H, Mahnke M, Memmert K, Petersen F, Schupp T, Küsters E, Mutz M (1999) Fermentative preparation process for and crystal forms of cytostatics. Int Patent Application WO99/42602Google Scholar
  75. 75.
    Küsters E, Unternährer H (2002) Process for the isolation and purification of epothilones. Int Patent Application WO02/46196Google Scholar
  76. 76.
    Arslanian R, Parker C, Wang P, McIntire J, Lau J, Starks C, Licari P (2000) Large-scale isolation and crystallization of epothilone D from Myxococcus xanthus cultures. J Nat Prod 65: 570–572Google Scholar
  77. 77.
    Mutka S, Carney J, Liu Y, Kennedy J (2006) Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45: 1321–1330PubMedGoogle Scholar
  78. 78.
    Frykman S, Tsuruta H, Licari P (2005) Assessment of fed-batch, semicontinuous, and continuous epothilone D production processes. Biotechnol Prog 21: 1102–1108PubMedGoogle Scholar
  79. 79.
    Klar U, Skuballa W, Buchmann B, Schwede W, Bunte T, Hoffmann J, Lichtner R (2001) Synthesis and biological activity of epothilones. In: I Ojima, GD Vite, K-H Altmann (eds): Anticancer agents — frontiers in cancer chemotherapy. ACS Symposium Series 796. American Chemical Society, Washington DC, 131–147Google Scholar
  80. 80.
    Sefkow M, Kiffe M, Schummer D, Höfle G (1998) Oxidative and reductive transformations of epothilone A. Bioorg Med Chem Lett 8: 3025–3030PubMedGoogle Scholar
  81. 81.
    Sefkow M, Kiffe M, Höfle G (1998) Derivatization of the C12–C13 functional groups of epothilones A, B and C. Bioorg Med Chem Lett 8: 3031–3036PubMedGoogle Scholar
  82. 82.
    Vite GD, Borzilleri RM, Kim SH, Regueiro-Rin A, Humphreys WG, Lee FYF (2001) Epothilones A and B: Springboards for semisynthesis of promising antimitotic agents. In: I Ojima, GD Vite, K-H Altmann (eds): Anticancer agents — frontiers in cancer chemotherapy. ACS Symposium Series 796. American Chemical Society, Washington DC, 148–170Google Scholar
  83. 83.
    Borzilleri RM, Zheng X, Schmidt RJ, Johnson JA, Kim SH, DiMarco JD, Fairchild CR, Gougoutas JZ, Lee FYF, Long BH et al (2000) A novel application of a Pd(0)-catalyzed nucleophilic substitution reaction to the regio-and stereoselective synthesis of lactam analogues of the epothilone natural products. J Am Chem Soc 122: 8890–8897Google Scholar
  84. 84.
    Lee FY, Borzilleri R, Fairchild CR, Kim SH, Long BH, Reventos-Suarez C, Vite GD, Rose WC, Kramer RA (2001) BMS-247550: A novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 7: 1429–1437PubMedGoogle Scholar
  85. 85.
    Chou TC, O’Connor OA, Tong WP, Guan Y, Zhang ZG, Stachel SJ, Lee C, Danishefsky SJ (2001) The synthesis, discovery, and development of a highly promising class of microtubule stabilization agents: curative effects of desoxyepothilones B and F against human tumor xenografts in nude mice. Proc Natl Acad Sci USA 98: 8113–8118PubMedGoogle Scholar
  86. 86.
    Schinzer D, Altmann K-H, Stuhlmann F, Bauer A, Wartmann M (2000) Synthesis and biological evaluation of aza-epothilones. ChemBioChem 1: 67–70PubMedGoogle Scholar
  87. 87.
    Stachel SJ, Lee CB, Spassova M, Chappell MD, Bornmann WG, Danishefsky SJ, Chou T-C, Guan Y (2001) On the Interactivity of complex synthesis and tumor pharmacology in the drug discovery process: total synthesis and comparative in vivo evaluations of the 15-Aza epothilones. J Org Chem 66: 4369–4378PubMedGoogle Scholar
  88. 88.
    Yamaguchi H, Paranawithana SR, Lee MW, Huang Z, Bhalla KN, Wang HG (2002) Epothilone B analogue (BMS-247550)-mediated cytotoxicity through induction of Bax conformational change in human breast cancer cells. Cancer Res 62: 466–471PubMedGoogle Scholar
  89. 89.
    Regueiro-Ren A, Leavitt K, Kim SH, Höfle G, Kiffe M, Gougoutas JZ, DiMarco JD, Lee FYF, Fairchild CR, Long BH et al (2002) SAR and pH stability of cyano-substituted epothilones. Org Lett 4: 3815–3818PubMedGoogle Scholar
  90. 90.
    Cachoux F, Isarno T, Wartmann M, Altmann KH (2005) Scaffolds for microtubule inhibition through extensive modification of the epothilone template. Angew Chem Int Ed 44: 7469–7473Google Scholar
  91. 91.
    Nicolaou KC, Sarabia F, Ninkovic S, Finlay MR, Boddy CNC (1998) Probing the ring size of epothilones: total synthesis of [14]-, [15]-, [17]-, and [18] epothilones A. Angew Chem Int Ed 37: 81–84Google Scholar
  92. 92.
    For other epothilone pharmacophore models cf. [52, 154–157]Google Scholar
  93. 93.
    End N, Furet P, van Campenhout N, Wartmann M, Altmann KH (2004) Total synthesis and biological evaluation of a C(10)/C(12)-phenylene-bridged analog of epothilone D. Chem & Biodiversity 1: 1771–1784Google Scholar
  94. 94.
    Arslanian RL, Tang L, Blough S, Ma W, Qiu R-G, Katz L, Carney JR (2002) A new cytotoxic epothilone from modified polyketide synthases heterologously expressed in Myxococcus xanthus. J Nat Prod 65: 1061–1064PubMedGoogle Scholar
  95. 95.
    Biswas K, Lin H, Njardson JT, Chappell MD, Chou TC, Guan Y, Tong WP, He L, Horwitz SB, Danishefsky SJ (2002) Highly concise routes to epothilones: the total synthesis and evaluation of epothilone 490. J Am Chem Soc 124: 9825–9832PubMedGoogle Scholar
  96. 96.
    Rivkin A, Njardson JT, Biswas K, Chou TC, Danishefsky SJ (2000) Total syntheses of [17]-and [18]dehydrodesoxyepothilones B via a concise ring-closing metathesis-based strategy: correlation of ring size with biological activity in the epothilone series. J Org Chem 67: 7737–7740Google Scholar
  97. 97.
    Rivkin A, Biswas K, Chou TC, Danishefsky SJ (2002) On the introduction of a trifluoromethyl substituent in the epothilone setting: chemical issues related to ring forming olefin metathesis and earliest biological findings. Org Lett 4: 4081–4084PubMedGoogle Scholar
  98. 98.
    Rivkin A, Yoshimura F, Gabarda AE, Chou TC, Dong H, Tong WP, Danishefsky SJ (2003) Complex target-oriented total synthesis in the drug discovery process: the discovery of a highly promising family of second generation epothilones. J Am Chem Soc 125: 2899–2901PubMedGoogle Scholar
  99. 99.
    Yoshimura F, Rivkin A, Gabarda AE, Chou TC, Dong H, Sukenick, Morel FF, Taylor RE, Danishefsky SJ (2003) Synthesis and conformational analysis of (E)-9,10-dehydroepothilone B: A suggestive link between the chemistry and biology of epothilones. Angew Chem Int Ed 42: 2518–2512Google Scholar
  100. 100.
    Chou TC, Dong H, Rivkin A, Yoshimura F, Gabarda AE, Cho YS, Tong WP, Danishefsky SJ (2003) Design and total synthesis of a superior family of epothilone analogues, which eliminate xenograft tumors to a nonrelapsable state. Angew Chem Int Ed 42: 4762–4767Google Scholar
  101. 101.
    Rivkin A, Chou TC, Danishefsky SJ (2005) On the remarkable antitumor properties of fludelone: How we got there. Angew Chem Int Ed 44: 2838–2850Google Scholar
  102. 102.
    Rivkin A, Yoshimura F, Gabarda AE, Cho YS, Chou TC, Dong HJ, Danishefsky SJ (2004) Discovery of (E)-9,10-dehydroepothilones through chemical synthesis: On the emergence of 26-trifluoro-(E)-9,10-dehydro-12,13-desoxyepothilone B as a promising anticancer drug candidate. J Am Chem Soc 126: 10913–10922PubMedGoogle Scholar
  103. 103.
    Rivkin A, Cho YS, Gabarda AE, Yoshimura F, Danishefsky SJ (2004) Application of ringclosing metathesis reactions in the synthesis of epothilones. J Nat Prod 67: 139–143PubMedGoogle Scholar
  104. 104.
    Tang L, Li RG, Yong L, Katz L (2003) Generation of novel epothilone analogs with cytotoxic activity by biotransformation. J Antibiotics 56: 16–23Google Scholar
  105. 105.
    Starks CM, Zhou Y, Liu F, Licari P (2003) Isolation and characterization of new epothilone analogues from recombinant Myxococcus xanthus fermentations. J Nat Prod 66: 1313–1317PubMedGoogle Scholar
  106. 106.
    White JD, Carter RG, Sundermann KF, Wartmann M (2001) Total synthesis of epothilone B, epothilone D, and cis-and trans-9,10-dehydroepothilone D. J Am Chem Soc 123: 5407–5413PubMedGoogle Scholar
  107. 107.
    White JD, Carter RG, Sundermann KF, Wartmann M (2003) Total synthesis of epothilone B, epothilone D, and cis-and trans-9,10-dehydroepothilone D [Erratum for J Am Chem Soc (2001) 123: 5407–5413]. J Am Chem Soc 125: 3190Google Scholar
  108. 108.
    Carlomagno T, Blommers MJJ, Meiler J, Jahnke W, Schupp T, Petersen F, Schinzer D, Altmann KH, Griesinger C (2003) The high-resolution solution structure of epothilone a bound to tubulin: An understanding of the structure-activity relationships for a powerful class of antitumor agents. Angew Chem Int Ed 42: 2511–2515Google Scholar
  109. 109.
    Chou TC, Dong HJ, Zhang XG, Tong WP, Danishefsky SJ (2005) Therapeutic cure against human tumor xenografts in nude mice by a microtubule stabilization agent, fludelone, via parenteral or oral route. Cancer Res 65: 9445–9454PubMedGoogle Scholar
  110. 110.
    Wu KD, Cho YS, Katz J, Ponomarev V, Chen-Kiang S, Danishefsky SJ, Moore MAS (2005) Investigation of antitumor effects of synthetic epothilone analogs in human myeloma models in vitro and in vivo. Proc Natl Acad Sci USA 102: 10640–10645PubMedGoogle Scholar
  111. 111.
    Qintard D, Bertrand P, Vielle S, Raimbaud E, Renard P, Pfeiffer B, Gesson J-P (2003) Enantioselective synthesis of 2,3-dehydro-3-desoxy-10-oxa epothilone D. Synlett 13: 2033–2036Google Scholar
  112. 112.
    Schinzer D, Böhm OM, Altmann K-H, Wartmann M (2004) Synthesis and biological evaluation of furano-epothilone C. Synlett 14: 1375–1378Google Scholar
  113. 113.
    Meng D, Su DS, Balog A, Bertinato P, Sorensen EJ, Danishefsky SJ, Zheng YH, Chou TC, He L, Horwitz SB (1997) An application to the synthesis of fully active epothilone congeners. J Am Chem Soc 119: 2733–2734Google Scholar
  114. 114.
    Su DS, Meng D, Bertinato P, Balog A, Sorensen EJ, Danishefsky SJ, Zheng YH, Chou TC, He L, Horwitz SB (1997) Total synthesis of (-)-epothilone B: an extension of the Suzuki coupling method and insights into structure-activity relationships of the epothilones. Angew Chem Int Ed 36: 757–759Google Scholar
  115. 115.
    Nicolaou KC, Winssinger N, Pastor J, Ninkovic S, Sarabia F, He Y, Vourloumis D, Yang Z, Li T, Giannakakou P et al (1997) Synthesis of epothilones A and B in solid and solution phase. Nature 387: 268–272PubMedGoogle Scholar
  116. 116.
    Nicolaou KC, Vourloumis D, Li T, Pastor J, Winssinger N, He Y, Ninkovic S, Sarabia F, Vallberg H, Roschangar F et al (1997) Designed epothilones: combinatorial synthesis, tubulin assembly properties, and cytotoxic action against taxol-resistant tumor cells. Angew Chem Int Ed 36: 2097–2103Google Scholar
  117. 117.
    Chou TC, Zhang XG, Harris CR, Kuduk SD, Balog A, Savin KA, Bertino JR, Danishefsky SJ (1998) Desoxyepothilone B is curative against human tumor xenografts that are refractory to paclitaxel. Proc Natl Acad Sci USA 95: 15798–15802PubMedGoogle Scholar
  118. 118.
    Johnson J, Kim SH, Bifano M, DiMarco J, Fairchild C, Gougoutas J, Lee F, Long B, Tokarski J, Vite GD (2000) Synthesis, structure proof, and biological activity of epothilone cyclopropanes. Org Lett 2: 1537–1540PubMedGoogle Scholar
  119. 119.
    Nicolaou KC, Namoto K, Li J, Ritzen A, Ulven T, Shoji M, Zaharevitz D, Gussio R, Sackett DL, Ward RD et al (2000) Synthesis and biological evaluation of 12,13-cyclopropyl and 12,13-cyclobutyl epothilones. ChemBioChem 2: 69–75Google Scholar
  120. 120.
    Nicolaou KC, Namoto K, Ritzen A, Ulven T, Shoji M, Li J, D’Amico G, Liotta D, French CT, Wartmann M et al (2001) Chemical synthesis and biological evaluation of cis-and trans-12,13-cyclopropyl and 12,13-cyclobutyl epothilones and related pyridine side chain analogues. J Am Chem Soc 123: 9313–9323PubMedGoogle Scholar
  121. 121.
    Regueiro-Ren A, Borzilleri RM, Zheng X, Kim SH, Johnson JA, Fairchild, CR, Lee FY, Long BH, Vite GD (2001) Synthesis and biological activity of novel epothilone aziridines. Org Lett 3: 2693–2696PubMedGoogle Scholar
  122. 122.
    Altmann KH, Bold G, Caravatti G, Denni D, Flörsheimer A, Schmidt A, Rihs G, Wartmann M (2002) The total synthesis and biological assessment of trans-epothilone A. Helv Chim Acta 85: 4086–4110Google Scholar
  123. 123.
    Nicolaou KC, Ritzen A, Namoto K, Ruben MB, Diaz F, Andreu JM, Wartmann M, Altmann KH, O’Brate A, Giannakakou P (2002) Chemical synthesis and biological evaluation of novel epothilone B and trans-12,13-cyclopropyl epothilone B analogues. Tetrahedron 58: 6413–6432Google Scholar
  124. 124.
    Nicolaou KC, Ninkovic S, Finlay MR, Sarabia F, Li T (1997) Total synthesis of 26-hydroxyepothilone B and related analogs. JCS Chem Commun 2343–2344Google Scholar
  125. 125.
    Chappell MD, Harris CR, Kuduk SD, Balog A, Wu Z, Zhang F, Lee CB, Stachel SJ, Danishefsky SJ, Chou TC et al (2002) Probing the SAR of dEpoB via chemical synthesis: a total synthesis evaluation of C26-(1,3-dioxolanyl)-12,13-desoxyepothilone B. J Org Chem 67: 7730–7736PubMedGoogle Scholar
  126. 126.
    Newman RA, Yang J, Finlay MRV, Cabral F, Vourloumis D, Stevens LC, Troncoso LP, Wu X, Logothetis CJ, Nicolaou KC et al (2001) Antitumor efficacy of 26-fluoroepothilone B against human prostate cancer xenografts. Cancer Chemother Pharmacol 48: 319–326PubMedGoogle Scholar
  127. 127.
    Altmann KH, Nicolaou KC, Wartmann M, O’Reilly T (2001) Proc Am Assoc Cancer Res 42: Abstract #1979Google Scholar
  128. 128.
    Höfle G, Glaser N, Kiffe M, Hecht H-J, Sasse F, Reichenbach H (1999) N-oxidation of epothilone A-C and O-acyl rearrangement to C-19-and C21-substituted epothilones. Angew Chem Int Ed 38: 1971–1974Google Scholar
  129. 129.
    Sefkow M, Höfle G (1998) Substitutions at the thiazole moiety of epothilone. Heterocycles 48: 2485–2488Google Scholar
  130. 130.
    Nicolaou KC, King NP, Finlay MRV, He Y, Roschangar F, Vourloumis D, Vallberg H, Sarabia F, Ninkovich S, Hepworth D (1999) Total synthesis of epothilone E and related side-chain modified analogues via a Stille coupling based strategy. Bioorg Med Chem 7: 665–697PubMedGoogle Scholar
  131. 131.
    Nicolaou KC, Scarpelli R, Bollbuck B, Werschkun B, Pereira MM, Wartmann M, Altmann KH, Zaharevitz D, Gussio R, Giannakakou P (2000) Chemical synthesis and biological properties of pyridine epothilones. Chem Biol 7: 593–599PubMedGoogle Scholar
  132. 132.
    Nicolaou KC, Hepworth D, King NP, Finlay MR, Scarpelli R, Pereira MM, Bollbuck B, Bigot A, Werschkun B (2000) Total synthesis of 16-desmethylepothilone B, epothilone B10, epothilone F, and related side chain modified epothilone B analogues. Chem Eur J 6: 2783–2800Google Scholar
  133. 133.
    Nicolaou KC, Hepworth D, Finlay MRV, Paul KN, Werschkun B, Bigot A (1999) Synthesis of 16-desmethylepothilone B: improved methodology for the rapid highly selective and convergent construction of epothilone B and analogues. JCS Chem Comm 519–520Google Scholar
  134. 134.
    Kolman A (2004) BMS-310705 Bristol-Myers Squibb/GBF. Curr Opin Investigational Drugs 5: 1292–1297Google Scholar
  135. 135.
    Kamath AV, Chang M, Lee F, Zhang YP, Marathe PH (2005) Preclinical pharmacokinetics and oral bioavailability of BMS-310705, a novel epothilone B analog. Cancer Chemother Pharm 56: 145–153Google Scholar
  136. 136.
    Lee CB, Chou TC, Zhang XG, Wang ZG, Kuduk SD, Chappell MD, Stachel SJ, Danishefsky SJ (2000) Total synthesis and antitumor activity of 12,13-desoxyepothilone F: An unexpected solvolysis problem at C15, mediated by remote substitution at C21. J Org Chem 65: 6525–6533PubMedGoogle Scholar
  137. 137.
    Höfle G, Glaser N, Leibold T (2000) Synthesis and cytotoxicity of C-21 modified epothilones. Ger Offen 2000; DE 19907588Google Scholar
  138. 138.
    Uyar D, Takigawa N, Mekhail T, Grabowski D, Markman M, Lee F, Canetta R, Peck R, Bukowski R, Ganapathi R (2003) Apoptotic pathways of epothilone BMS 310705. Gynecologic Oncology 91: 173–178PubMedGoogle Scholar
  139. 139.
    Altmann KH, Blommers MJJ, Caravatti G, Flörsheimer A, Nicolaou KC, O’Reilly T, Schmidt A, Schinzer D, Wartmann M (2001) Synthetic and semisynthetic analogs of epothilones: chemistry and biological activity. In: I Ojima, GD Vite, KH Altmann (eds): Anticancer agents–frontiers in cancer chemotherapy. ACS Symposium Series 796. American Chemical Society, Washington DC, 112–130Google Scholar
  140. 140.
    Wartmann M, Loretan J, Reuter R, Hattenberger M, Muller M, Vaxelaire J, Maira S-M, Flörsheimer A, O’Reilly T, Nicolaou KC et al (2004) Preclinical pharmacological profile of ABJ879, a novel epothilone B analog with potent and protracted anti-tumor activity. Proc Am Assoc Cancer Res 45: Abstract #5440Google Scholar
  141. 141.
    Nicolaou KC, Sasmal PK, Rassias G, Reddy MV, Altmann K-H, Wartmann M, O’Brate A, Giannakakou P (2003) Design, synthesis, and biological properties of highly potent epothilone B analogues. Angew Chem Int Ed 42: 3515–3520Google Scholar
  142. 142.
    Nicolaou KC, Pratt BA, Arseniyadis S, Wartmann M, O’Brate A (2006) Molecular design and chemical synthesis of a highly potent epothilone. ChemMedChem 1: 41–44PubMedGoogle Scholar
  143. 143.
    Nicolaou KC, Finlay MRV, Ninkovic S, King NP, He Y, Li TH, Sarabia F, Vourloumis D (1998) Synthesis and biological properties of C12,13-cyclopropyl-epothilone A and related epothilones. Chem Biol 5: 365–372PubMedGoogle Scholar
  144. 144.
    Altmann KH, Bold G, Caravatti G, Flörsheimer A, Guagnano V, Wartmann M (2000) Synthesis and biological evaluation of highly potent analogues of epothilones B and D. Bioorg Med Chem Lett 10: 2765–2768PubMedGoogle Scholar
  145. 145.
    Cachoux F, Isarno T, Wartmann M, Altmann KH (2006) Total synthesis and biological assessment of benzimidazole-based analogues of epothilone A: Ambivalent effects on cancer cell growth inhibition. ChemBioChem 7: 54–57PubMedGoogle Scholar
  146. 146.
    Dong SD, Sundermann K, Smith KMJ, Petryka J, Liu FH, Myles DC (2004) Rapid access to epothilone analogs via semisynthetic degradation and reconstruction of epothilone D. Tetrahedron Lett 45: 1945–1947Google Scholar
  147. 147.
    Cachoux F, Isarno T, Wartmann M, Altmann KH (2006) Total synthesis and biological assessment of cyclopropane-based epothilone analogues — modulation of drug efflux through polarity adjustments. Synlett 16: 1384–1388Google Scholar
  148. 148.
    Bold G, Wojeik S, Caravatti G, Lindauer R, Stierlin C, Gertsch J, Wartmann M, Altmann KH (2006) Structure-activity relationships in side-chain-modified epothilone analogues. How important is the position of the nitrogen atom? ChemMedChem 1: 37–40PubMedGoogle Scholar
  149. 149.
    Glunz PW, He L, Horwitz SB, Chakravarty S, Ojima I, Chou TC, Danishefsky SJ (1999) The synthesis and evaluation of 12,13-benzodesoxyepothilone B: a highly convergent route. Tetrahedron Lett 40: 6895–6898Google Scholar
  150. 150.
    Sinha SC, Sun J, Wartmann M, Lerner RA (2001) Synthesis of epothilone analogues by antibody-catalyzed resolution of thiazole aldol synthons on a multigram scale. Biological consequences of C-13 alkylation of epothilones. ChemBioChem 2: 656–665PubMedGoogle Scholar
  151. 151.
    Altmann KH, Flörsheimer A, Bold G, Caravatti G, Wartmann M (2004) Natural product-based drug discovery — Epothilones as lead structures for the development of new anticancer agents. Chimia 58: 686–690Google Scholar
  152. 152.
    Feyen F, Gertsch J, Wartmann M, Altmann KH (2006) Design and synthesis of 12-azaepothilones (azathilones) — Non-natural natural products with potent anticancer activity. Angew Chem Int Ed 45: 5880–5885Google Scholar
  153. 153.
    Cachoux F, Schaal F, Teichert A, Wagner T, Altmann KH (2004) Synthesis of 4-aza Epothilone D Analogs. Synlett 14: 2709–2712Google Scholar
  154. 154.
    Ojima I, Chakravarty S, Inoue T, Lin S, He L, Horwitz SB, Kuduk SD, Danishefsky SJ (1999) A common pharmacophore for cytotoxic natural products that stabilize microtubules. Proc Natl Acad Sci USA 96: 4256–4261PubMedGoogle Scholar
  155. 155.
    Wang M, Xia X, Kim Y, Hwang D, Jansen JM, Botta M, Liotta DC, Snyder JP (1999) A unified and quantitative receptor model for the microtubule binding of paclitaxel and epothilone. Org Lett 1: 43–46PubMedGoogle Scholar
  156. 156.
    Manetti F, Forli S, Maccari L, Corelli F, Botta M (2003) 3D QSAR studies of the interaction between β-tubulin and microtubule stabilizing antimitotic agents (MSAA). A combined pharmacophore generation and pseudoreceptor modeling approach applied to taxanes and epothilones. Il Farmaco 58: 357–361PubMedGoogle Scholar
  157. 157.
    Manetti F, Maccari L, Corelli F, Botta M (2004) 3D QSAR models of interactions between β-tubulin and microtubule stabilizing antimitotic agents (MSAA): A survey on taxanes and epothilones. Curr Topics Med Chem 4: 203–217Google Scholar
  158. 158.
    Rubin EH, Rothermel J, Tesfaye F, Chen TL, Hubert M, Ho YY, Hsu CH, Oza AM (2005) Phase I dose-finding study of weekly single-agent patupilone in patients with advanced solid tumors. J Clin Oncol 23: 9120–9129PubMedGoogle Scholar
  159. 159.
    Gore M, Kaye S, Oza A, Keyzor C, Pyle L, Pereno R, Sklenar I, Zaknoen S, Johri A (2005) J Clin Oncol, ASCO Annual Meeting Proceedings. Vol 23, No. 16S, Part I of II (June 1 Supplement), 2005: 087 Abstract #5087Google Scholar
  160. 160.
    http://www.novartisoncology.com/page/patupilone.jspGoogle Scholar
  161. 161.
    Lin N, Brakora K, Seiden M (2003) BMS-247550 (Bristol-Myers Squibb/GBF). Curr Opin Investigational Drugs 4: 746–756Google Scholar
  162. 162.
    Pivot X, Dufresne A, Villanueva C (2007) Efficacy and safety of ixabepilone, a novel epothilone analogue. Clinical Breast Cancer 7: 543–549PubMedGoogle Scholar
  163. 163.
    Larkin JMG, Kaye SB (2006) Epothilones in the treatment of cancer. Exp Opin Invest Drugs 15: 691–702Google Scholar
  164. 164.
    Mani S, McDaid H, Hamilton A, Hochster H, Cohen MB, Khabelle D, Griffin T, Lebwohl ED, Liebes L, Muggia F et al (2004) Phase I clinical and pharmacokinetic study of BMS-247550, a novel derivative of epothilone B, in solid tumors. Clin Cancer Res 10: 1289–1298PubMedGoogle Scholar
  165. 165.
    McDaid HM, Mani S, Shen HJ, Muggia F, Sonnichsen D, Horwitz SB (2002) Validation of the pharmacodynamics of BMS-247550, an analogue of epothilone B, during a Phase I clinical study. Clin Cancer Res 8: 2035–2043PubMedGoogle Scholar
  166. 166.
    Denduluri N, Low JA, Lee JJ, Berman AW, Walshe JM, Vatas U, Chow CK, Steinberg SM, Yang SX, Swain SM (2007) Phase II trial of Ixabepilone, an Epothilone B analog, in patients with metastatic breast cancer previously untreated with taxanes. J Clin Oncol 25: 3421–3427PubMedGoogle Scholar
  167. 167.
    http://www.cancer.gov/cancertopics/druginfo/fda-ixabepiloneGoogle Scholar
  168. 168.
    Kolman A (2005) Activity of epothilones. Curr Opin Investigational Drugs 5: 657–667Google Scholar
  169. 169.
    Spriggs D, Dupont J, Pezzulli S, Larkin J, Cropp J, Johnson R, Hannah AL (2003) AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, 17–21 November 2003, Boston, MA, USA. Abstract # A248. Published as a Supplement to Clinical Cancer Research, Volume 9, Issue 16 (1 December 2003)Google Scholar
  170. 170.
    Holen K, Hannah A, Zhou Y, Cropp G, Johnson R, Volkman J, Binger K, Alberti D, Wilding G (2003) AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, 17–21 November 2003, Boston, MA, USA. Abstract # A261. Published as a Supplement to Clinical Cancer Research, Volume 9, Issue 16 (1 December 2003)Google Scholar
  171. 171.
    http://www.biospace.com/news_story.aspx?StoryID=20602Google Scholar

Copyright information

© Birkhäuser Verlag, Basel (Switzerland) 2008

Authors and Affiliations

  • Karl-Heinz Altmann
    • 1
  • Klaus Memmert
    • 2
  1. 1.Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZürichSwitzerland
  2. 2.Novartis Institute for Biomedical Research BaselSwitzerland

Personalised recommendations