Skip to main content

Epothilones as lead structures for new anticancer drugs — pharmacology, fermentation, and structure-activity-relationships

  • Chapter
Natural Compounds as Drugs

Part of the book series: Progress in Drug Research ((PDR,volume 66))

Abstract

Epothilones (Epo’s) A and B are naturally occurring microtubule-stabilizers, which inhibit the growth of human cancer cells in vitro at low nM or sub-nM concentrations. In contrast to taxol (paclitaxel, Taxol®) epothilones are also active against different types of multidrug-resistant cancer cell lines in vitro and against multidrug-resistant tumors in vivo. Their attractive preclinical profile has made epothilones important lead structures in the search for improved cytotoxic anticancer drugs and Epo B (EPO906, patupilone) is currently undergoing Phase III clinical trials. Numerous synthetic and semisynthetic analogs have been prepared since the absolute stereochemistry of epothilones was first disclosed in mid-1996 and their in vitro biological activity has been determined. Apart from generating a wealth of SAR information, these efforts have led to the identification of at least six compounds (in addition to Epo B), which are currently at various stages of clinical evaluation in humans. The most advanced of these compounds, Epo B lactam BMS-247550 (ixabepilone), has recently obtained FDA approval for the treatment of metastatic and advanced breast cancer. This chapter will first provide a summary of the basic features of the biological profile of Epo B in vitro and in vivo. This will be followed by a review of the processes that have been developed for the fermentative production of Epo B. The main part of the chapter will focus on the most relevant aspects of the epothilone SAR with regard to effects on tubulin polymerization, in vitro antiproliferative activity, and in vivo antitumor activity. Particular emphasis will be placed on work conducted in the authors’ own laboratories, but data from other groups will also be included. In a final section, the current status of those epothilone analogs undergoing clinical development will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56: 106–130

    PubMed  Google Scholar 

  2. Capdeville R, Buchdunger E, Zimmermann J, Matter A (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev Drug Disc 1: 493–502

    CAS  Google Scholar 

  3. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Rev Drug Disc 5: 835–844

    CAS  Google Scholar 

  4. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nature Biotechnol 23: 1147–1157

    CAS  Google Scholar 

  5. Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Comm 333: 328–335

    PubMed  CAS  Google Scholar 

  6. Lu MC (1995) Antimitotic agents. In: WO Foye (ed): Cancer chemotherapeutic agents. American Chemical Society, Washington DC, 345–368

    Google Scholar 

  7. Mekhail TM, Markman M (2002) Paclitaxel in cancer therapy. Exp Opin Pharmacother 3: 755–766

    CAS  Google Scholar 

  8. Obasaju C, Hudes GR (2001) Paclitaxel and docetaxel in prostate cancer. Hematology/Oncology Clinics of North America 15: 525–545

    PubMed  CAS  Google Scholar 

  9. Hamel E (1996) Antimitotic natural products and their interaction with tubulin. Med Res Rev 16: 207–231

    PubMed  CAS  Google Scholar 

  10. Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Ann Rev Med 48: 353–374

    PubMed  CAS  Google Scholar 

  11. Prinz H (2002) Recent advances in the field of tubulin polymerization inhibitors. Exp Rev Anticancer Ther 2: 695–708

    CAS  Google Scholar 

  12. Altmann KH (2001) Microtubule-stabilizing agents: a growing class of important anticancer drugs. Curr Opin Chem Biol 5: 424–432

    PubMed  CAS  Google Scholar 

  13. Miles DC (2002) Emerging microtubule stabilizing agents for cancer chemotherapy. Ann Rep Med Chem 37: 125–132

    Google Scholar 

  14. Altmann KH, Gertsch J (2007) Anticancer drugs from nature — natural products as a unique source of new microtubule-stabilizing agents. Nat Prod Rep 24: 327–357

    PubMed  CAS  Google Scholar 

  15. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277: 665–667

    PubMed  CAS  Google Scholar 

  16. Höfle G, Reichenbach H (2005) Epothilone, a myxobacterial metabolite with promising antitumor activity. In: GM Cragg, DGI Kingston, DJ Newman (eds): Anticancer agents form natural products. Taylor & Francis, Boca Raton, FL, 413–450

    Google Scholar 

  17. Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H (1996) Epothilons A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria). Production, physico-chemical and biological properties. J Antibiotics 49: 560–563 (see also: G Höfle, N Bedorf, K Gerth, H Reichenbach, German Patent Disclosure, DE 4138042, 1993; Chem. Abstr. 120, 52841 (1993))

    CAS  Google Scholar 

  18. Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a Taxol-like mechanism of action. Cancer Res 55: 2325–2333

    PubMed  CAS  Google Scholar 

  19. Hardt IH, Steinmetz H, Gerth K, Sasse F, Reichenbach H, Höfle G (2001) New natural epothilones from Sorangium cellulosum, Strains So ce90/B2 and So ce90/D13: Isolation, structure elucidation, and SAR studies. J Nat Prod 64: 847–856

    PubMed  CAS  Google Scholar 

  20. Höfle G, Bedorf N, Steinmetz H, Schomburg D, Gerth K, Reichenbach H (1996) Antibiotics from gliding bacteria. 77. Epothilone A and B — novel 16-membered macrolides with cytotoxic activity: isolation, crystal structure, and conformation in solution. Angew Chem Int Ed 35: 1567–1569

    Google Scholar 

  21. Kowalski RJ, Giannakakou P, Hamel E (1997) Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol). J Biol Chem 272: 2534–2541

    PubMed  CAS  Google Scholar 

  22. Altmann K-H, Wartmann M, O’Reilly T (2000) Epothilones and related structures — a new class of microtubule inhibitors with potent in vivo antitumor activity. Biochim Biophys Acta 1470: M79–M91

    PubMed  CAS  Google Scholar 

  23. Wolff A, Technau A, Brandner G (1997) Epothilone A induces apoptosis in neuroblastoma cells with multiple mechanisms of drug resistance. Int J Onc 11: 123–126

    CAS  Google Scholar 

  24. Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS (1997) Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272: 17118–17125

    PubMed  CAS  Google Scholar 

  25. Nicolaou KC, Roschangar F, Vourloumis D (1998) Chemical biology of epothilones. Angew Chem Int Ed 37: 2014–2045

    CAS  Google Scholar 

  26. Harris CR, Danishefsky SJ (1999) Complex target-oriented synthesis in the drug discovery process: a case history in the dEpoB series. J Org Chem 64: 8434–8456

    CAS  Google Scholar 

  27. Mulzer J, Martin HJ, Berger M (1999) Progress in the synthesis of chiral heterocyclic natural products: epothilone B and tartrolon B. J Heterocycl Chem 36: 1421–1436

    CAS  Google Scholar 

  28. Nicolaou KC, Ritzen A, Namoto K (2001) Recent developments in the chemistry, biology and medicine of the epothilones. JCS Chem Commun 1523–1535

    Google Scholar 

  29. Altmann KH (2004) The merger of and natural product synthesis and medicinal chemistry: on the chemistry and chemical biology of epothilones. Org Biomol Chem 2: 2137–2152

    PubMed  CAS  Google Scholar 

  30. Watkins EB, Chittiboyina AG, Jung JC, Avery MA (2005) The epothilones and related analogues — A review of their syntheses and anti-cancer activities. Curr Pharm Des 11: 1615–1653

    PubMed  CAS  Google Scholar 

  31. Watkins EB, Chittiboyina AG, Jung JC, Avery MA (2006) Recent developments in the syntheses of the epothilones and related analogues. Eur J Org Chem 18: 4071–4084

    Google Scholar 

  32. Wartmann M, Altmann KH (2002) The biology and medicinal chemistry of epothilones. Currr Med Chem Anti-Cancer Agents 2: 123–148

    CAS  Google Scholar 

  33. Altmann KH (2003) Epothilone B and its analogs — a new family of anticancer agents. Mini-Rev Med Chem 3: 149–158

    PubMed  CAS  Google Scholar 

  34. Borzilleri RM, Vite GD (2003) Epothilones: new tubulin polymerization agents in preclinical and clinical development. Drugs of the Future 27: 1149–1163

    Google Scholar 

  35. Altmann KH (2005) Recent developments in the chemistry and biology of epothilones Curr Pharm Des 11: 1595–1613

    PubMed  CAS  Google Scholar 

  36. Altmann KH, Pfeiffer B, Arseniyadis S, Pratt BA, Nicolaou KC (2007) The chemistry and biology of epothilones — The wheel keeps turning. ChemMedChem 2: 396–423

    PubMed  CAS  Google Scholar 

  37. Chappell MD, Stachel SJ, Lee CB, Danishefsky SJ (2002) On the total synthesis and preliminary biological evaluations of 15(R) and 15(S) Aza-dEpoB: a mitsunobu inversion at C15 in pre-epothilone fragments. Org Lett 2: 1633–1636

    Google Scholar 

  38. Walsh CT, O’Connor S, Schneider TL (2003) Polyketide-nonribosomal peptide epothilone antitumor agents: the EpoA, B, C subunits. J Ind Microbiol Biotechnol 30: 448–455

    PubMed  CAS  Google Scholar 

  39. He L, Orr GA, Horwitz SB (2001) Novel molecules that interact with microtubules and have functional activity similar to Taxol. Drug Discovery Today 6: 1153–1164

    PubMed  CAS  Google Scholar 

  40. Altaha R, Fojo T, Reed E, Abraham J (2002) Epothilones: A novel class of non-taxane microtubule-stabilizing agents. Curr Pharm Des 8: 1707–1712

    PubMed  CAS  Google Scholar 

  41. Altmann KH, Bold G, Caravatti G, End N, Flörsheimer A, Guagnano V, O’Reilly T, Wartmann M (2000) Epothilones and their analogs — potential new weapons in the fight against cancer. Chimia 54: 612–621

    CAS  Google Scholar 

  42. Buey RM, Diaz JF, Andreu JM, O’Brate A, Giannakakou P, Nicolaou KC, Sasmal PK, Ritzén A, Namoto K (2004) Interactions of epothilone analogs with the paclitaxel binding site: relationship between binding affinity, microtubule stabilization, and cytotoxicity. Chem & Biol 11: 225–236

    CAS  Google Scholar 

  43. Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L (1996) Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exist and apoptotic cell death. Cancer Res 56: 816–825

    PubMed  CAS  Google Scholar 

  44. Lichtner RB, Rotgeri A, Bunte T, Buchmann B, Hoffmann J, Schwede W, Skuballa W, Klar U (2001) Subcellular distribution of epothilones in human tumor cells. Proc Natl Acad Sci USA 98: 11743–11748

    PubMed  CAS  Google Scholar 

  45. Jordan MA (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem: Anti-Cancer Agents 2: 1–14

    CAS  Google Scholar 

  46. Kamath K, Jordan MA (2003) Suppression of microtubule dynamics by epothilone B is associated with mitotic arrest. Cancer Res 63: 6026–6031

    PubMed  CAS  Google Scholar 

  47. Chen JGC, Horwitz SM (2002) Differential mitotic responses to microtubule-stabilizing and-destabilizing drugs. Cancer Res 14: 1935–1938

    Google Scholar 

  48. Chen JGC, Yang C-PHY, Cammer M, Horwitz SM (2003) Gene expression and mitotic exit induced by microtubule-stabilizing drugs. Cancer Res 15: 7891–7899

    Google Scholar 

  49. Garraway LA, Chabner B (2002) MDR1 inhibition: less resistance or less relevance? Eur J Cancer 38: 2337–2340

    PubMed  CAS  Google Scholar 

  50. Nettles JH, Li HL, Cornett B, Krahn JM, Snyder JP, Downing KH (2004) The binding mode of epothilone A on α,β-tubulin by electron crystallography. Science 305: 866–869

    PubMed  CAS  Google Scholar 

  51. Nogales E, Wolf SG, Downing KH (1998) Structure of the αβ tubulin dimer by electron crystallography. Nature 391: 199–203

    PubMed  CAS  Google Scholar 

  52. Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T (2000) A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 97: 2904–2909

    PubMed  CAS  Google Scholar 

  53. He L, Yang CP, Horwitz SB (2001) Mutations in β-tubulin map to domains involved in regulation of microtubule stability in epothilone-resistant cell lines. Mol Cancer Ther 1: 3–10

    PubMed  CAS  Google Scholar 

  54. Yang CPH, Verdier-Pinard P, Wang F, Lippaine-Horvath E, He LF, Li DS, Höfle G, Ojima I, Orr GA, Horwitz SB (2005) A highly epothilone B-resistant A549 cell line with mutations in tubulin that confer drug dependence. Mol Cancer Ther 4: 987–995

    PubMed  CAS  Google Scholar 

  55. Verrills NM, Flemming CL, Liu M, Ivery MT, Cobon GS, Norris MD, Haber M, Kavallaris M (2003) Microtubule alterations and mutations induced by desoxyepothilone B: Implications for drug-target interactions. Chem Biol 10: 597–607

    PubMed  CAS  Google Scholar 

  56. Cabral F, Barlow SB (1991) Resistance to antimitotic agents as genetic probes of microtubule structure and function. Pharmacol Ther 52: 159–171

    PubMed  CAS  Google Scholar 

  57. Su DS, Balog A, Meng D, Bertinato P, Danishefsky SJ, Zheng YH, Chou TC, He L, Horwitz SB (1997) Structure-activity relationships of the epothilones and the first in vivo comparison with paclitaxel. Angew Chem Int Ed 36: 2093–2096

    CAS  Google Scholar 

  58. Chou TC, Zhang XG, Balog A, Su DS, Meng D, Savin K, Bertino JR, Danishefsky SJ (1998) Desoxyepothilone B: an efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc Natl Acad Sci USA 95: 9642–9647

    PubMed  CAS  Google Scholar 

  59. O’Reilly T, McSheehy PMJ, Wenger F, Hattenberger M, Muller M, Vaxelaire J, Altmann KH, Wartmann M (2005) EPO906 (epothilone B) is active in vivo against experimental prostate tumors. Prostate 65: 231–240

    PubMed  CAS  Google Scholar 

  60. Rothermel J, Wartmann M, Chen T, Hohneker T (2003) EPO906 (epothilone B): a promising novel microtubule stabilizer. Seminars in Oncology 30(Suppl 6): 51–55

    PubMed  CAS  Google Scholar 

  61. Pietras K, Stumm M, Hubert M, Buchdunger E, Rubin K, Heldin C-K, McSheehy P, Wartmann M, Oestman A (2003) STI571 enhances the therapeutic index of epothilone B by a tumor-selective increase of drug uptake. Clin Cancer Res 9: 3779–3787

    PubMed  CAS  Google Scholar 

  62. Klar U, Buchmann B, Schwede, W, Skuballa W, Hoffmann J, Lichtner, RB (2006) Total synthesis and antitumor activity of ZK-EPO: The first fully synthetic epothilone in clinical development. Angew Chem Int Ed 45: 7942–7948

    CAS  Google Scholar 

  63. Reichenbach H, Höfle G (1993) Production of bioactive secondary metabolites. In: M Dworkin, D Kaiser (eds): Myxobacteria II. American Society for Microbiology, Washington, DC, 347–397

    Google Scholar 

  64. Reichenbach H, Höfle G (1999) Myxobacteria as producers of secondary metabolites. In: S Grabley, R Thiericke (eds): Drug Discovery from Nature. Springer Verlag, Berlin, Heidelberg, 149–179

    Google Scholar 

  65. Gerth K, Steinmetz H, Höfle G, Reichenbach H (2002) Studies on the biosynthesis of epothilones: hydroxylation of Epo A and B to epothilones E and F. J Antibiotics 55: 41–45

    CAS  Google Scholar 

  66. Frykman S, Tsuruta H, Galazzo J, Licari P (2006) Characterization of product capture resin during microbial cultivations. J Ind Microbiol Biotechnol 33: 445–453

    PubMed  CAS  Google Scholar 

  67. Molnar I, Schupp T, Ono M, Zirkle R, Milnamow M, Novok-Thompson B, Engel N, Toupet C, Stratmann A, Ligon J et al (2000) The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem Biol 7: 97–109

    PubMed  CAS  Google Scholar 

  68. Tang L, Shah S, Chung L, Katz L, Khosla C, Julien B (2000) Cloning and heterologous expression of the epothilone gene cluster. Science 287: 640–642

    PubMed  CAS  Google Scholar 

  69. Gerth K, Steinmetz H, Höfle G, Reichenbach H (2000) Studies on the biosynthesis of epothilones: the biosynthetic origin of the carbon skeleton. J Antibiotics 53: 1373–1377

    CAS  Google Scholar 

  70. Gerth K, Steinmetz H, Höfle G, Reichenbach H (2001) Studies on the biosynthesis of epothilones: the PKS and epothilone C/D monooxygenase. J Antibiotics 54: 144–148

    CAS  Google Scholar 

  71. Frykman S, Tsuruta H, Lau J, Regentin R, Ou S, Reeves C, Carney J, Santi D, Licari P (2002) Modulation of epothilone analog production through media design. J Ind MicrobiolBiotechnol 28: 17–20

    CAS  Google Scholar 

  72. Höfle G, Bedorf N, Gerth K, Reichenbach H (1993) Epothilones, process for preparing the same and their use as medicaments and as plant protecting agents. Int Patent Application WO93/10121

    Google Scholar 

  73. Benigni D, Stankavage R, Chiang S, Hou H, Eagan B, Gu D, Hou D, Mintzmyer L, Tully T, Davis B et al (2004) Methods for the preparation, isolation and purification of epothilone B, and x-ray crystal structures of epothilone B. Int Patent Application WO2004/026254

    Google Scholar 

  74. Hofmann H, Mahnke M, Memmert K, Petersen F, Schupp T, Küsters E, Mutz M (1999) Fermentative preparation process for and crystal forms of cytostatics. Int Patent Application WO99/42602

    Google Scholar 

  75. Küsters E, Unternährer H (2002) Process for the isolation and purification of epothilones. Int Patent Application WO02/46196

    Google Scholar 

  76. Arslanian R, Parker C, Wang P, McIntire J, Lau J, Starks C, Licari P (2000) Large-scale isolation and crystallization of epothilone D from Myxococcus xanthus cultures. J Nat Prod 65: 570–572

    Google Scholar 

  77. Mutka S, Carney J, Liu Y, Kennedy J (2006) Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45: 1321–1330

    PubMed  CAS  Google Scholar 

  78. Frykman S, Tsuruta H, Licari P (2005) Assessment of fed-batch, semicontinuous, and continuous epothilone D production processes. Biotechnol Prog 21: 1102–1108

    PubMed  CAS  Google Scholar 

  79. Klar U, Skuballa W, Buchmann B, Schwede W, Bunte T, Hoffmann J, Lichtner R (2001) Synthesis and biological activity of epothilones. In: I Ojima, GD Vite, K-H Altmann (eds): Anticancer agents — frontiers in cancer chemotherapy. ACS Symposium Series 796. American Chemical Society, Washington DC, 131–147

    Google Scholar 

  80. Sefkow M, Kiffe M, Schummer D, Höfle G (1998) Oxidative and reductive transformations of epothilone A. Bioorg Med Chem Lett 8: 3025–3030

    PubMed  CAS  Google Scholar 

  81. Sefkow M, Kiffe M, Höfle G (1998) Derivatization of the C12–C13 functional groups of epothilones A, B and C. Bioorg Med Chem Lett 8: 3031–3036

    PubMed  CAS  Google Scholar 

  82. Vite GD, Borzilleri RM, Kim SH, Regueiro-Rin A, Humphreys WG, Lee FYF (2001) Epothilones A and B: Springboards for semisynthesis of promising antimitotic agents. In: I Ojima, GD Vite, K-H Altmann (eds): Anticancer agents — frontiers in cancer chemotherapy. ACS Symposium Series 796. American Chemical Society, Washington DC, 148–170

    Google Scholar 

  83. Borzilleri RM, Zheng X, Schmidt RJ, Johnson JA, Kim SH, DiMarco JD, Fairchild CR, Gougoutas JZ, Lee FYF, Long BH et al (2000) A novel application of a Pd(0)-catalyzed nucleophilic substitution reaction to the regio-and stereoselective synthesis of lactam analogues of the epothilone natural products. J Am Chem Soc 122: 8890–8897

    CAS  Google Scholar 

  84. Lee FY, Borzilleri R, Fairchild CR, Kim SH, Long BH, Reventos-Suarez C, Vite GD, Rose WC, Kramer RA (2001) BMS-247550: A novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 7: 1429–1437

    PubMed  CAS  Google Scholar 

  85. Chou TC, O’Connor OA, Tong WP, Guan Y, Zhang ZG, Stachel SJ, Lee C, Danishefsky SJ (2001) The synthesis, discovery, and development of a highly promising class of microtubule stabilization agents: curative effects of desoxyepothilones B and F against human tumor xenografts in nude mice. Proc Natl Acad Sci USA 98: 8113–8118

    PubMed  CAS  Google Scholar 

  86. Schinzer D, Altmann K-H, Stuhlmann F, Bauer A, Wartmann M (2000) Synthesis and biological evaluation of aza-epothilones. ChemBioChem 1: 67–70

    PubMed  CAS  Google Scholar 

  87. Stachel SJ, Lee CB, Spassova M, Chappell MD, Bornmann WG, Danishefsky SJ, Chou T-C, Guan Y (2001) On the Interactivity of complex synthesis and tumor pharmacology in the drug discovery process: total synthesis and comparative in vivo evaluations of the 15-Aza epothilones. J Org Chem 66: 4369–4378

    PubMed  CAS  Google Scholar 

  88. Yamaguchi H, Paranawithana SR, Lee MW, Huang Z, Bhalla KN, Wang HG (2002) Epothilone B analogue (BMS-247550)-mediated cytotoxicity through induction of Bax conformational change in human breast cancer cells. Cancer Res 62: 466–471

    PubMed  CAS  Google Scholar 

  89. Regueiro-Ren A, Leavitt K, Kim SH, Höfle G, Kiffe M, Gougoutas JZ, DiMarco JD, Lee FYF, Fairchild CR, Long BH et al (2002) SAR and pH stability of cyano-substituted epothilones. Org Lett 4: 3815–3818

    PubMed  CAS  Google Scholar 

  90. Cachoux F, Isarno T, Wartmann M, Altmann KH (2005) Scaffolds for microtubule inhibition through extensive modification of the epothilone template. Angew Chem Int Ed 44: 7469–7473

    CAS  Google Scholar 

  91. Nicolaou KC, Sarabia F, Ninkovic S, Finlay MR, Boddy CNC (1998) Probing the ring size of epothilones: total synthesis of [14]-, [15]-, [17]-, and [18] epothilones A. Angew Chem Int Ed 37: 81–84

    CAS  Google Scholar 

  92. For other epothilone pharmacophore models cf. [52, 154–157]

    Google Scholar 

  93. End N, Furet P, van Campenhout N, Wartmann M, Altmann KH (2004) Total synthesis and biological evaluation of a C(10)/C(12)-phenylene-bridged analog of epothilone D. Chem & Biodiversity 1: 1771–1784

    CAS  Google Scholar 

  94. Arslanian RL, Tang L, Blough S, Ma W, Qiu R-G, Katz L, Carney JR (2002) A new cytotoxic epothilone from modified polyketide synthases heterologously expressed in Myxococcus xanthus. J Nat Prod 65: 1061–1064

    PubMed  CAS  Google Scholar 

  95. Biswas K, Lin H, Njardson JT, Chappell MD, Chou TC, Guan Y, Tong WP, He L, Horwitz SB, Danishefsky SJ (2002) Highly concise routes to epothilones: the total synthesis and evaluation of epothilone 490. J Am Chem Soc 124: 9825–9832

    PubMed  CAS  Google Scholar 

  96. Rivkin A, Njardson JT, Biswas K, Chou TC, Danishefsky SJ (2000) Total syntheses of [17]-and [18]dehydrodesoxyepothilones B via a concise ring-closing metathesis-based strategy: correlation of ring size with biological activity in the epothilone series. J Org Chem 67: 7737–7740

    Google Scholar 

  97. Rivkin A, Biswas K, Chou TC, Danishefsky SJ (2002) On the introduction of a trifluoromethyl substituent in the epothilone setting: chemical issues related to ring forming olefin metathesis and earliest biological findings. Org Lett 4: 4081–4084

    PubMed  CAS  Google Scholar 

  98. Rivkin A, Yoshimura F, Gabarda AE, Chou TC, Dong H, Tong WP, Danishefsky SJ (2003) Complex target-oriented total synthesis in the drug discovery process: the discovery of a highly promising family of second generation epothilones. J Am Chem Soc 125: 2899–2901

    PubMed  CAS  Google Scholar 

  99. Yoshimura F, Rivkin A, Gabarda AE, Chou TC, Dong H, Sukenick, Morel FF, Taylor RE, Danishefsky SJ (2003) Synthesis and conformational analysis of (E)-9,10-dehydroepothilone B: A suggestive link between the chemistry and biology of epothilones. Angew Chem Int Ed 42: 2518–2512

    CAS  Google Scholar 

  100. Chou TC, Dong H, Rivkin A, Yoshimura F, Gabarda AE, Cho YS, Tong WP, Danishefsky SJ (2003) Design and total synthesis of a superior family of epothilone analogues, which eliminate xenograft tumors to a nonrelapsable state. Angew Chem Int Ed 42: 4762–4767

    CAS  Google Scholar 

  101. Rivkin A, Chou TC, Danishefsky SJ (2005) On the remarkable antitumor properties of fludelone: How we got there. Angew Chem Int Ed 44: 2838–2850

    CAS  Google Scholar 

  102. Rivkin A, Yoshimura F, Gabarda AE, Cho YS, Chou TC, Dong HJ, Danishefsky SJ (2004) Discovery of (E)-9,10-dehydroepothilones through chemical synthesis: On the emergence of 26-trifluoro-(E)-9,10-dehydro-12,13-desoxyepothilone B as a promising anticancer drug candidate. J Am Chem Soc 126: 10913–10922

    PubMed  CAS  Google Scholar 

  103. Rivkin A, Cho YS, Gabarda AE, Yoshimura F, Danishefsky SJ (2004) Application of ringclosing metathesis reactions in the synthesis of epothilones. J Nat Prod 67: 139–143

    PubMed  CAS  Google Scholar 

  104. Tang L, Li RG, Yong L, Katz L (2003) Generation of novel epothilone analogs with cytotoxic activity by biotransformation. J Antibiotics 56: 16–23

    CAS  Google Scholar 

  105. Starks CM, Zhou Y, Liu F, Licari P (2003) Isolation and characterization of new epothilone analogues from recombinant Myxococcus xanthus fermentations. J Nat Prod 66: 1313–1317

    PubMed  CAS  Google Scholar 

  106. White JD, Carter RG, Sundermann KF, Wartmann M (2001) Total synthesis of epothilone B, epothilone D, and cis-and trans-9,10-dehydroepothilone D. J Am Chem Soc 123: 5407–5413

    PubMed  CAS  Google Scholar 

  107. White JD, Carter RG, Sundermann KF, Wartmann M (2003) Total synthesis of epothilone B, epothilone D, and cis-and trans-9,10-dehydroepothilone D [Erratum for J Am Chem Soc (2001) 123: 5407–5413]. J Am Chem Soc 125: 3190

    CAS  Google Scholar 

  108. Carlomagno T, Blommers MJJ, Meiler J, Jahnke W, Schupp T, Petersen F, Schinzer D, Altmann KH, Griesinger C (2003) The high-resolution solution structure of epothilone a bound to tubulin: An understanding of the structure-activity relationships for a powerful class of antitumor agents. Angew Chem Int Ed 42: 2511–2515

    CAS  Google Scholar 

  109. Chou TC, Dong HJ, Zhang XG, Tong WP, Danishefsky SJ (2005) Therapeutic cure against human tumor xenografts in nude mice by a microtubule stabilization agent, fludelone, via parenteral or oral route. Cancer Res 65: 9445–9454

    PubMed  CAS  Google Scholar 

  110. Wu KD, Cho YS, Katz J, Ponomarev V, Chen-Kiang S, Danishefsky SJ, Moore MAS (2005) Investigation of antitumor effects of synthetic epothilone analogs in human myeloma models in vitro and in vivo. Proc Natl Acad Sci USA 102: 10640–10645

    PubMed  CAS  Google Scholar 

  111. Qintard D, Bertrand P, Vielle S, Raimbaud E, Renard P, Pfeiffer B, Gesson J-P (2003) Enantioselective synthesis of 2,3-dehydro-3-desoxy-10-oxa epothilone D. Synlett 13: 2033–2036

    Google Scholar 

  112. Schinzer D, Böhm OM, Altmann K-H, Wartmann M (2004) Synthesis and biological evaluation of furano-epothilone C. Synlett 14: 1375–1378

    Google Scholar 

  113. Meng D, Su DS, Balog A, Bertinato P, Sorensen EJ, Danishefsky SJ, Zheng YH, Chou TC, He L, Horwitz SB (1997) An application to the synthesis of fully active epothilone congeners. J Am Chem Soc 119: 2733–2734

    CAS  Google Scholar 

  114. Su DS, Meng D, Bertinato P, Balog A, Sorensen EJ, Danishefsky SJ, Zheng YH, Chou TC, He L, Horwitz SB (1997) Total synthesis of (-)-epothilone B: an extension of the Suzuki coupling method and insights into structure-activity relationships of the epothilones. Angew Chem Int Ed 36: 757–759

    CAS  Google Scholar 

  115. Nicolaou KC, Winssinger N, Pastor J, Ninkovic S, Sarabia F, He Y, Vourloumis D, Yang Z, Li T, Giannakakou P et al (1997) Synthesis of epothilones A and B in solid and solution phase. Nature 387: 268–272

    PubMed  CAS  Google Scholar 

  116. Nicolaou KC, Vourloumis D, Li T, Pastor J, Winssinger N, He Y, Ninkovic S, Sarabia F, Vallberg H, Roschangar F et al (1997) Designed epothilones: combinatorial synthesis, tubulin assembly properties, and cytotoxic action against taxol-resistant tumor cells. Angew Chem Int Ed 36: 2097–2103

    CAS  Google Scholar 

  117. Chou TC, Zhang XG, Harris CR, Kuduk SD, Balog A, Savin KA, Bertino JR, Danishefsky SJ (1998) Desoxyepothilone B is curative against human tumor xenografts that are refractory to paclitaxel. Proc Natl Acad Sci USA 95: 15798–15802

    PubMed  CAS  Google Scholar 

  118. Johnson J, Kim SH, Bifano M, DiMarco J, Fairchild C, Gougoutas J, Lee F, Long B, Tokarski J, Vite GD (2000) Synthesis, structure proof, and biological activity of epothilone cyclopropanes. Org Lett 2: 1537–1540

    PubMed  CAS  Google Scholar 

  119. Nicolaou KC, Namoto K, Li J, Ritzen A, Ulven T, Shoji M, Zaharevitz D, Gussio R, Sackett DL, Ward RD et al (2000) Synthesis and biological evaluation of 12,13-cyclopropyl and 12,13-cyclobutyl epothilones. ChemBioChem 2: 69–75

    Google Scholar 

  120. Nicolaou KC, Namoto K, Ritzen A, Ulven T, Shoji M, Li J, D’Amico G, Liotta D, French CT, Wartmann M et al (2001) Chemical synthesis and biological evaluation of cis-and trans-12,13-cyclopropyl and 12,13-cyclobutyl epothilones and related pyridine side chain analogues. J Am Chem Soc 123: 9313–9323

    PubMed  CAS  Google Scholar 

  121. Regueiro-Ren A, Borzilleri RM, Zheng X, Kim SH, Johnson JA, Fairchild, CR, Lee FY, Long BH, Vite GD (2001) Synthesis and biological activity of novel epothilone aziridines. Org Lett 3: 2693–2696

    PubMed  CAS  Google Scholar 

  122. Altmann KH, Bold G, Caravatti G, Denni D, Flörsheimer A, Schmidt A, Rihs G, Wartmann M (2002) The total synthesis and biological assessment of trans-epothilone A. Helv Chim Acta 85: 4086–4110

    CAS  Google Scholar 

  123. Nicolaou KC, Ritzen A, Namoto K, Ruben MB, Diaz F, Andreu JM, Wartmann M, Altmann KH, O’Brate A, Giannakakou P (2002) Chemical synthesis and biological evaluation of novel epothilone B and trans-12,13-cyclopropyl epothilone B analogues. Tetrahedron 58: 6413–6432

    CAS  Google Scholar 

  124. Nicolaou KC, Ninkovic S, Finlay MR, Sarabia F, Li T (1997) Total synthesis of 26-hydroxyepothilone B and related analogs. JCS Chem Commun 2343–2344

    Google Scholar 

  125. Chappell MD, Harris CR, Kuduk SD, Balog A, Wu Z, Zhang F, Lee CB, Stachel SJ, Danishefsky SJ, Chou TC et al (2002) Probing the SAR of dEpoB via chemical synthesis: a total synthesis evaluation of C26-(1,3-dioxolanyl)-12,13-desoxyepothilone B. J Org Chem 67: 7730–7736

    PubMed  CAS  Google Scholar 

  126. Newman RA, Yang J, Finlay MRV, Cabral F, Vourloumis D, Stevens LC, Troncoso LP, Wu X, Logothetis CJ, Nicolaou KC et al (2001) Antitumor efficacy of 26-fluoroepothilone B against human prostate cancer xenografts. Cancer Chemother Pharmacol 48: 319–326

    PubMed  CAS  Google Scholar 

  127. Altmann KH, Nicolaou KC, Wartmann M, O’Reilly T (2001) Proc Am Assoc Cancer Res 42: Abstract #1979

    Google Scholar 

  128. Höfle G, Glaser N, Kiffe M, Hecht H-J, Sasse F, Reichenbach H (1999) N-oxidation of epothilone A-C and O-acyl rearrangement to C-19-and C21-substituted epothilones. Angew Chem Int Ed 38: 1971–1974

    Google Scholar 

  129. Sefkow M, Höfle G (1998) Substitutions at the thiazole moiety of epothilone. Heterocycles 48: 2485–2488

    CAS  Google Scholar 

  130. Nicolaou KC, King NP, Finlay MRV, He Y, Roschangar F, Vourloumis D, Vallberg H, Sarabia F, Ninkovich S, Hepworth D (1999) Total synthesis of epothilone E and related side-chain modified analogues via a Stille coupling based strategy. Bioorg Med Chem 7: 665–697

    PubMed  CAS  Google Scholar 

  131. Nicolaou KC, Scarpelli R, Bollbuck B, Werschkun B, Pereira MM, Wartmann M, Altmann KH, Zaharevitz D, Gussio R, Giannakakou P (2000) Chemical synthesis and biological properties of pyridine epothilones. Chem Biol 7: 593–599

    PubMed  CAS  Google Scholar 

  132. Nicolaou KC, Hepworth D, King NP, Finlay MR, Scarpelli R, Pereira MM, Bollbuck B, Bigot A, Werschkun B (2000) Total synthesis of 16-desmethylepothilone B, epothilone B10, epothilone F, and related side chain modified epothilone B analogues. Chem Eur J 6: 2783–2800

    CAS  Google Scholar 

  133. Nicolaou KC, Hepworth D, Finlay MRV, Paul KN, Werschkun B, Bigot A (1999) Synthesis of 16-desmethylepothilone B: improved methodology for the rapid highly selective and convergent construction of epothilone B and analogues. JCS Chem Comm 519–520

    Google Scholar 

  134. Kolman A (2004) BMS-310705 Bristol-Myers Squibb/GBF. Curr Opin Investigational Drugs 5: 1292–1297

    CAS  Google Scholar 

  135. Kamath AV, Chang M, Lee F, Zhang YP, Marathe PH (2005) Preclinical pharmacokinetics and oral bioavailability of BMS-310705, a novel epothilone B analog. Cancer Chemother Pharm 56: 145–153

    CAS  Google Scholar 

  136. Lee CB, Chou TC, Zhang XG, Wang ZG, Kuduk SD, Chappell MD, Stachel SJ, Danishefsky SJ (2000) Total synthesis and antitumor activity of 12,13-desoxyepothilone F: An unexpected solvolysis problem at C15, mediated by remote substitution at C21. J Org Chem 65: 6525–6533

    PubMed  CAS  Google Scholar 

  137. Höfle G, Glaser N, Leibold T (2000) Synthesis and cytotoxicity of C-21 modified epothilones. Ger Offen 2000; DE 19907588

    Google Scholar 

  138. Uyar D, Takigawa N, Mekhail T, Grabowski D, Markman M, Lee F, Canetta R, Peck R, Bukowski R, Ganapathi R (2003) Apoptotic pathways of epothilone BMS 310705. Gynecologic Oncology 91: 173–178

    PubMed  CAS  Google Scholar 

  139. Altmann KH, Blommers MJJ, Caravatti G, Flörsheimer A, Nicolaou KC, O’Reilly T, Schmidt A, Schinzer D, Wartmann M (2001) Synthetic and semisynthetic analogs of epothilones: chemistry and biological activity. In: I Ojima, GD Vite, KH Altmann (eds): Anticancer agents–frontiers in cancer chemotherapy. ACS Symposium Series 796. American Chemical Society, Washington DC, 112–130

    Google Scholar 

  140. Wartmann M, Loretan J, Reuter R, Hattenberger M, Muller M, Vaxelaire J, Maira S-M, Flörsheimer A, O’Reilly T, Nicolaou KC et al (2004) Preclinical pharmacological profile of ABJ879, a novel epothilone B analog with potent and protracted anti-tumor activity. Proc Am Assoc Cancer Res 45: Abstract #5440

    Google Scholar 

  141. Nicolaou KC, Sasmal PK, Rassias G, Reddy MV, Altmann K-H, Wartmann M, O’Brate A, Giannakakou P (2003) Design, synthesis, and biological properties of highly potent epothilone B analogues. Angew Chem Int Ed 42: 3515–3520

    CAS  Google Scholar 

  142. Nicolaou KC, Pratt BA, Arseniyadis S, Wartmann M, O’Brate A (2006) Molecular design and chemical synthesis of a highly potent epothilone. ChemMedChem 1: 41–44

    PubMed  CAS  Google Scholar 

  143. Nicolaou KC, Finlay MRV, Ninkovic S, King NP, He Y, Li TH, Sarabia F, Vourloumis D (1998) Synthesis and biological properties of C12,13-cyclopropyl-epothilone A and related epothilones. Chem Biol 5: 365–372

    PubMed  CAS  Google Scholar 

  144. Altmann KH, Bold G, Caravatti G, Flörsheimer A, Guagnano V, Wartmann M (2000) Synthesis and biological evaluation of highly potent analogues of epothilones B and D. Bioorg Med Chem Lett 10: 2765–2768

    PubMed  CAS  Google Scholar 

  145. Cachoux F, Isarno T, Wartmann M, Altmann KH (2006) Total synthesis and biological assessment of benzimidazole-based analogues of epothilone A: Ambivalent effects on cancer cell growth inhibition. ChemBioChem 7: 54–57

    PubMed  CAS  Google Scholar 

  146. Dong SD, Sundermann K, Smith KMJ, Petryka J, Liu FH, Myles DC (2004) Rapid access to epothilone analogs via semisynthetic degradation and reconstruction of epothilone D. Tetrahedron Lett 45: 1945–1947

    CAS  Google Scholar 

  147. Cachoux F, Isarno T, Wartmann M, Altmann KH (2006) Total synthesis and biological assessment of cyclopropane-based epothilone analogues — modulation of drug efflux through polarity adjustments. Synlett 16: 1384–1388

    Google Scholar 

  148. Bold G, Wojeik S, Caravatti G, Lindauer R, Stierlin C, Gertsch J, Wartmann M, Altmann KH (2006) Structure-activity relationships in side-chain-modified epothilone analogues. How important is the position of the nitrogen atom? ChemMedChem 1: 37–40

    PubMed  CAS  Google Scholar 

  149. Glunz PW, He L, Horwitz SB, Chakravarty S, Ojima I, Chou TC, Danishefsky SJ (1999) The synthesis and evaluation of 12,13-benzodesoxyepothilone B: a highly convergent route. Tetrahedron Lett 40: 6895–6898

    CAS  Google Scholar 

  150. Sinha SC, Sun J, Wartmann M, Lerner RA (2001) Synthesis of epothilone analogues by antibody-catalyzed resolution of thiazole aldol synthons on a multigram scale. Biological consequences of C-13 alkylation of epothilones. ChemBioChem 2: 656–665

    PubMed  CAS  Google Scholar 

  151. Altmann KH, Flörsheimer A, Bold G, Caravatti G, Wartmann M (2004) Natural product-based drug discovery — Epothilones as lead structures for the development of new anticancer agents. Chimia 58: 686–690

    CAS  Google Scholar 

  152. Feyen F, Gertsch J, Wartmann M, Altmann KH (2006) Design and synthesis of 12-azaepothilones (azathilones) — Non-natural natural products with potent anticancer activity. Angew Chem Int Ed 45: 5880–5885

    CAS  Google Scholar 

  153. Cachoux F, Schaal F, Teichert A, Wagner T, Altmann KH (2004) Synthesis of 4-aza Epothilone D Analogs. Synlett 14: 2709–2712

    Google Scholar 

  154. Ojima I, Chakravarty S, Inoue T, Lin S, He L, Horwitz SB, Kuduk SD, Danishefsky SJ (1999) A common pharmacophore for cytotoxic natural products that stabilize microtubules. Proc Natl Acad Sci USA 96: 4256–4261

    PubMed  CAS  Google Scholar 

  155. Wang M, Xia X, Kim Y, Hwang D, Jansen JM, Botta M, Liotta DC, Snyder JP (1999) A unified and quantitative receptor model for the microtubule binding of paclitaxel and epothilone. Org Lett 1: 43–46

    PubMed  CAS  Google Scholar 

  156. Manetti F, Forli S, Maccari L, Corelli F, Botta M (2003) 3D QSAR studies of the interaction between β-tubulin and microtubule stabilizing antimitotic agents (MSAA). A combined pharmacophore generation and pseudoreceptor modeling approach applied to taxanes and epothilones. Il Farmaco 58: 357–361

    PubMed  CAS  Google Scholar 

  157. Manetti F, Maccari L, Corelli F, Botta M (2004) 3D QSAR models of interactions between β-tubulin and microtubule stabilizing antimitotic agents (MSAA): A survey on taxanes and epothilones. Curr Topics Med Chem 4: 203–217

    CAS  Google Scholar 

  158. Rubin EH, Rothermel J, Tesfaye F, Chen TL, Hubert M, Ho YY, Hsu CH, Oza AM (2005) Phase I dose-finding study of weekly single-agent patupilone in patients with advanced solid tumors. J Clin Oncol 23: 9120–9129

    PubMed  CAS  Google Scholar 

  159. Gore M, Kaye S, Oza A, Keyzor C, Pyle L, Pereno R, Sklenar I, Zaknoen S, Johri A (2005) J Clin Oncol, ASCO Annual Meeting Proceedings. Vol 23, No. 16S, Part I of II (June 1 Supplement), 2005: 087 Abstract #5087

    Google Scholar 

  160. http://www.novartisoncology.com/page/patupilone.jsp

    Google Scholar 

  161. Lin N, Brakora K, Seiden M (2003) BMS-247550 (Bristol-Myers Squibb/GBF). Curr Opin Investigational Drugs 4: 746–756

    CAS  Google Scholar 

  162. Pivot X, Dufresne A, Villanueva C (2007) Efficacy and safety of ixabepilone, a novel epothilone analogue. Clinical Breast Cancer 7: 543–549

    PubMed  CAS  Google Scholar 

  163. Larkin JMG, Kaye SB (2006) Epothilones in the treatment of cancer. Exp Opin Invest Drugs 15: 691–702

    CAS  Google Scholar 

  164. Mani S, McDaid H, Hamilton A, Hochster H, Cohen MB, Khabelle D, Griffin T, Lebwohl ED, Liebes L, Muggia F et al (2004) Phase I clinical and pharmacokinetic study of BMS-247550, a novel derivative of epothilone B, in solid tumors. Clin Cancer Res 10: 1289–1298

    PubMed  CAS  Google Scholar 

  165. McDaid HM, Mani S, Shen HJ, Muggia F, Sonnichsen D, Horwitz SB (2002) Validation of the pharmacodynamics of BMS-247550, an analogue of epothilone B, during a Phase I clinical study. Clin Cancer Res 8: 2035–2043

    PubMed  CAS  Google Scholar 

  166. Denduluri N, Low JA, Lee JJ, Berman AW, Walshe JM, Vatas U, Chow CK, Steinberg SM, Yang SX, Swain SM (2007) Phase II trial of Ixabepilone, an Epothilone B analog, in patients with metastatic breast cancer previously untreated with taxanes. J Clin Oncol 25: 3421–3427

    PubMed  CAS  Google Scholar 

  167. http://www.cancer.gov/cancertopics/druginfo/fda-ixabepilone

    Google Scholar 

  168. Kolman A (2005) Activity of epothilones. Curr Opin Investigational Drugs 5: 657–667

    Google Scholar 

  169. Spriggs D, Dupont J, Pezzulli S, Larkin J, Cropp J, Johnson R, Hannah AL (2003) AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, 17–21 November 2003, Boston, MA, USA. Abstract # A248. Published as a Supplement to Clinical Cancer Research, Volume 9, Issue 16 (1 December 2003)

    Google Scholar 

  170. Holen K, Hannah A, Zhou Y, Cropp G, Johnson R, Volkman J, Binger K, Alberti D, Wilding G (2003) AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, 17–21 November 2003, Boston, MA, USA. Abstract # A261. Published as a Supplement to Clinical Cancer Research, Volume 9, Issue 16 (1 December 2003)

    Google Scholar 

  171. http://www.biospace.com/news_story.aspx?StoryID=20602

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel (Switzerland)

About this chapter

Cite this chapter

Altmann, KH., Memmert, K. (2008). Epothilones as lead structures for new anticancer drugs — pharmacology, fermentation, and structure-activity-relationships. In: Petersen, F., Amstutz, R. (eds) Natural Compounds as Drugs. Progress in Drug Research, vol 66. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8595-8_6

Download citation

Publish with us

Policies and ethics