Chemical-genetic approaches for exploring the mode of action of natural products

  • Andres Lopez
  • Ainslie B. Parsons
  • Corey Nislow
  • Guri Giaever
  • Charles Boone
Part of the Progress in Drug Research book series (PDR, volume 66)


Determining the mode of action of bioactive compounds, including natural products, is a central problem in chemical biology. Because many genes are conserved from the yeast Saccharomyces cerevisiae to humans and a number of powerful genomics tools and methodologies have been developed for this model system, yeast is making a major contribution to the field of chemical genetics. The set of barcoded yeast deletion mutants, including the set of ∼5000 viable haploid and homozygous diploid deletion mutants and the complete set of ∼6000 heterozygous deletion mutants, containing the set of ∼1000 essential genes, are proving highly informative for identifying chemical-genetic interactions and deciphering compound mode of action. Gene deletions that render cells hypersensitive to a specific drug identify pathways that buffer the cell against the toxic effects of the drug and thereby provide clues about both gene and compound function. Moreover, compounds that show similar chemical- genetic profiles often perturb similar target pathways. Gene dosage can be exploited to discover connections between compounds and their targets. For example, haploinsufficiency profiling of an antifungal compound, in which the set of ∼6000 heterozygous diploid deletion mutants are scored for hypersensitivity to a compound, may identify the target directly. Creating deletion mutant collections in other fungal species, including the major human fungal pathogen Candida albicans, will expand our chemical genomics tool set, allowing us to screen for antifungal lead drugs directly. The yeast deletion mutant collection is also being exploited to map large-scale genetic interaction data obtained from genome-wide synthetic lethal screens and the integration of this data with chemical genetic data should provide a powerful system for linking compounds to their target pathway. Extensive application of chemical genetics in yeast has the potential to develop a small molecule inhibitor for the majority of all ∼6000 yeast genes.


Genetic Interaction ABIETIC Acid ARTEMISINIC Acid Cell Wall Organization FENPROPI Morph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66: 1022–1037PubMedCrossRefGoogle Scholar
  2. 2.
    Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66: 807–815PubMedCrossRefGoogle Scholar
  3. 3.
    Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4: 206–220PubMedCrossRefGoogle Scholar
  4. 4.
    Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432: 829–837PubMedCrossRefGoogle Scholar
  5. 5.
    Nicolaou KC, Pfefferkorn JA (2001) Solid phase synthesis of complex natural products and libraries thereof. Biopolymers 60: 171–193PubMedCrossRefGoogle Scholar
  6. 6.
    Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6: 789–802PubMedCrossRefGoogle Scholar
  7. 7.
    Kukuruzinska MA, Bergh ML, Jackson BJ (1987) Protein glycosylation in yeast. Annu Rev Biochem 56: 915–944PubMedCrossRefGoogle Scholar
  8. 8.
    Li W, Mo W, Shen D, Sun L, Wang J, Lu S, Gitschier JM, Zhou B (2005) Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet 1: e36PubMedCrossRefGoogle Scholar
  9. 9.
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943PubMedCrossRefGoogle Scholar
  10. 10.
    Crespo JL, Hall MN (2002) Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 66: 579–591, table of contentsPubMedCrossRefGoogle Scholar
  11. 11.
    Chang S, Perry JD, Kosmorsky GS, Braun WE (2007) Rapamycin for treatment of refractory dysthyroid compressive optic neuropathy. Ophthal Plast Reconstr Surg 23: 225–226PubMedCrossRefGoogle Scholar
  12. 12.
    Douglas CM, Marrinan JA, Li W, Kurtz MB (1994) A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-beta-D-glucan synthase. J Bacteriol 176: 5686–5696PubMedGoogle Scholar
  13. 13.
    Douglas CM, Foor F, Marrinan JA, Morin N, Nielsen JB, Dahl AM, Mazur P, Baginsky W, Li W, el-Sherbeini M et al (1994) The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci USA 91: 12907–12911PubMedCrossRefGoogle Scholar
  14. 14.
    Douglas CM, D’Ippolito JA, Shei GJ, Meinz M, Onishi J, Marrinan JA, Li W, Abruzzo GK, Flattery A, Bartizal K et al (1997) Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 41: 2471–2479PubMedGoogle Scholar
  15. 15.
    Cardenas ME, Sanfridson A, Cutler NS, Heitman J (1998) Signal-transduction cascades as targets for therapeutic intervention by natural products. Trends Biotechnol 16: 427–433PubMedCrossRefGoogle Scholar
  16. 16.
    Pena-Castillo L, Hughes TR (2007) Why are there still over 1000 uncharacterized yeast genes? Genetics 176: 7–14PubMedCrossRefGoogle Scholar
  17. 17.
    Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278: 1064–1068PubMedCrossRefGoogle Scholar
  18. 18.
    Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M et al (1996) Life with 6000 genes. Science 274: 546, 563–547PubMedCrossRefGoogle Scholar
  19. 19.
    Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a model organism. Science 277: 1259–1260PubMedCrossRefGoogle Scholar
  20. 20.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921PubMedCrossRefGoogle Scholar
  21. 21.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291: 1304–1351PubMedCrossRefGoogle Scholar
  22. 22.
    Hughes TR (2002) Yeast and drug discovery. Funct Integr Genomics 2: 199–211PubMedCrossRefGoogle Scholar
  23. 23.
    Foury F (1997) Human genetic diseases: a cross-talk between man and yeast. Gene 195: 1–10PubMedCrossRefGoogle Scholar
  24. 24.
    Mc CM, Callender ME, Lawlis JF Jr (1951) Fumagillin (H-3), a new antibiotic with amebicidal properties. Science 113: 202–203CrossRefGoogle Scholar
  25. 25.
    Griffith EC, Su Z, Niwayama S, Ramsay CA, Chang YH, Liu JO (1998) Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc Natl Acad Sci USA 95: 15183–15188PubMedCrossRefGoogle Scholar
  26. 26.
    Cardenas ME, Cruz MC, Del Poeta M, Chung N, Perfect JR, Heitman J (1999) Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clin Microbiol Rev 12: 583–611PubMedGoogle Scholar
  27. 27.
    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive twohybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98: 4569–4574PubMedCrossRefGoogle Scholar
  28. 28.
    Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623–627PubMedCrossRefGoogle Scholar
  29. 29.
    Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, Klemic KG, Smith D, Gerstein M, Reed MA, Snyder M (2000) Analysis of yeast protein kinases using protein chips. Nat Genet 26: 283–289PubMedCrossRefGoogle Scholar
  30. 30.
    Horak CE, Snyder M (2002) Global analysis of gene expression in yeast. Funct Integr Genomics 2: 171–180PubMedCrossRefGoogle Scholar
  31. 31.
    Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425: 686–691PubMedCrossRefGoogle Scholar
  32. 32.
    Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391PubMedCrossRefGoogle Scholar
  33. 33.
    Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273–3297PubMedGoogle Scholar
  34. 34.
    Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD et al (2000) Functional discovery via a compendium of expression profiles. Cell 102: 109–126PubMedCrossRefGoogle Scholar
  35. 35.
    Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147PubMedCrossRefGoogle Scholar
  36. 36.
    Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180–183PubMedCrossRefGoogle Scholar
  37. 37.
    Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637–643PubMedCrossRefGoogle Scholar
  38. 38.
    Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631–636PubMedCrossRefGoogle Scholar
  39. 39.
    Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425: 737–741PubMedCrossRefGoogle Scholar
  40. 40.
    Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H et al (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364–2368PubMedCrossRefGoogle Scholar
  41. 41.
    Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M et al (2004) Global mapping of the yeast genetic interaction network. Science 303: 808–813PubMedCrossRefGoogle Scholar
  42. 42.
    Pan X, Yuan DS, Ooi SL, Wang X, Sookhai-Mahadeo S, Meluh P, Boeke JD (2007) dSLAM analysis of genome-wide genetic interactions in Saccharomyces cerevisiae. Methods 41: 206–221Google Scholar
  43. 43.
    Dwight SS, Balakrishnan R, Christie KR, Costanzo MC, Dolinski K, Engel SR, Feierbach B, Fisk DG, Hirschman J, Hong EL et al (2004) Saccharomyces genome database: underlying principles and organisation. Brief Bioinform 5: 9–22PubMedCrossRefGoogle Scholar
  44. 44.
    Mewes HW, Albermann K, Heumann K, Liebl S, Pfeiffer F (1997) MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acids Res 25: 28–30PubMedCrossRefGoogle Scholar
  45. 45.
    Breitkreutz BJ, Stark C, Tyers M (2003) The GRID: the General Repository for Interaction Datasets. Genome Biol 4: R23PubMedCrossRefGoogle Scholar
  46. 46.
    Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901–906PubMedCrossRefGoogle Scholar
  47. 47.
    Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost RL, Ho CH et al (2006) Exploring the mode of action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126: 611–625PubMedCrossRefGoogle Scholar
  48. 48.
    Scherens B, Goffeau A (2004) The uses of genome-wide yeast mutant collections. Genome Biol 5: 229PubMedCrossRefGoogle Scholar
  49. 49.
    Chan TF, Carvalho J, Riles L, Zheng XF (2000) A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc Natl Acad Sci USA 97: 13227–13232PubMedCrossRefGoogle Scholar
  50. 50.
    Desmoucelles C, Pinson B, Saint-Marc C, Daignan-Fornier B (2002) Screening the yeast “disruptome” for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid. J Biol Chem 277: 27036–27044PubMedCrossRefGoogle Scholar
  51. 51.
    Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF, Snipe JR, Resnick MA (2001) Genes required for ionizing radiation resistance in yeast. Nat Genet 29: 426–434PubMedCrossRefGoogle Scholar
  52. 52.
    Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis RW, Nislow C, Giaever G (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169: 1915–1925PubMedCrossRefGoogle Scholar
  53. 53.
    Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS, Hinshaw JC, Garnier P, Prestwich GD, Leonardson A et al (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116: 121–137PubMedCrossRefGoogle Scholar
  54. 54.
    Giaever G, Shoemaker DD, Jones TW, Liang H, Winzeler EA, Astromoff A, Davis RW (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat Genet 21: 278–283PubMedCrossRefGoogle Scholar
  55. 55.
    Giaever G, Flaherty P, Kumm J, Proctor M, Nislow C, Jaramillo DF, Chu AM, Jordan MI, Arkin AP, Davis RW (2004) Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci USA 101: 793–798PubMedCrossRefGoogle Scholar
  56. 56.
    Baetz K, McHardy L, Gable K, Tarling T, Reberioux D, Bryan J, Andersen RJ, Dunn T, Hieter P, Roberge M (2004) Yeast genome-wide drug-induced haploinsufficiency screen to determine drug mode of action. Proc Natl Acad Sci USA 101: 4525–4530PubMedCrossRefGoogle Scholar
  57. 57.
    Williams DE, Craig KS, Patrick B, McHardy LM, van Soest R, Roberge M, Andersen RJ (2002) Motuporamines, anti-invasion and anti-angiogenic alkaloids from the marine sponge Xestospongia exigua (Kirkpatrick): isolation, structure elucidation, analogue synthesis, and conformational analysis. J Org Chem 67: 245–258PubMedCrossRefGoogle Scholar
  58. 58.
    Dorer RK, Zhong S, Tallarico JA, Wong WH, Mitchison TJ, Murray AW (2005) A smallmolecule inhibitor of Mps1 blocks the spindle-checkpoint response to a lack of tension on mitotic chromosomes. Curr Biol 15: 1070–1076PubMedCrossRefGoogle Scholar
  59. 59.
    Schimke RT, Kaufman RJ, Alt FW, Kellems RF (1978) Gene amplification and drug resistance in cultured murine cells. Science 202: 1051–1055PubMedCrossRefGoogle Scholar
  60. 60.
    Rine J, Hansen W, Hardeman E, Davis RW (1983) Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci USA 80: 6750–6754PubMedCrossRefGoogle Scholar
  61. 61.
    Kontoyiannis DP, Sagar N, Hirschi KD (1999) Overexpression of Erg11p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 43: 2798–2800PubMedGoogle Scholar
  62. 62.
    Butcher RA, Bhullar BS, Perlstein EO, Marsischky G, LaBaer J, Schreiber SL (2006) Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway. Nat Chem Biol 2: 103–109PubMedCrossRefGoogle Scholar
  63. 63.
    White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11: 382–402PubMedGoogle Scholar
  64. 64.
    Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, Snyder M, Oliver SG, Cyert M, Hughes TR et al (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21: 319–330PubMedCrossRefGoogle Scholar
  65. 65.
    Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW (1996) Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular barcoding strategy. Nat Genet 14: 450–456PubMedCrossRefGoogle Scholar
  66. 66.
    Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901–906PubMedCrossRefGoogle Scholar
  67. 67.
    Fleming JA, Lightcap ES, Sadis S, Thoroddsen V, Bulawa CE, Blackman RK (2002) Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc Natl Acad Sci USA 99: 1461–1466PubMedCrossRefGoogle Scholar
  68. 68.
    Hanway D, Chin JK, Xia G, Oshiro G, Winzeler EA, Romesberg FE (2002) Previously uncharacterized genes in the UV-and MMS-induced DNA damage response in yeast. Proc Natl Acad Sci USA 99: 10605–10610PubMedCrossRefGoogle Scholar
  69. 69.
    Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22: 62–69PubMedCrossRefGoogle Scholar
  70. 70.
    Dueck D, Morris QD, Frey BJ (2005) Multi-way clustering of microarray data using probabilistic sparse matrix factorization. Bioinformatics 21(Suppl 1): i144–151PubMedCrossRefGoogle Scholar
  71. 71.
    Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG (1997) High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol 137: 399–416PubMedCrossRefGoogle Scholar
  72. 72.
    Torralba S, Raudaskoski M, Pedregosa AM, Laborda F (1998) Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology 144 (Pt 1): 45–53PubMedCrossRefGoogle Scholar
  73. 73.
    Fromtling RA (1988) Overview of medically important antifungal azole derivatives. Clin Microbiol Rev 1: 187–217PubMedGoogle Scholar
  74. 74.
    Truan G, Epinat JC, Rougeulle C, Cullin C, Pompon D (1994) Cloning and characterization of a yeast cytochrome b5-encoding gene which suppresses ketoconazole hypersensitivity in a NADPH-P-450 reductase-deficient strain. Gene 142: 123–127PubMedCrossRefGoogle Scholar
  75. 75.
    Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42: 260–266PubMedCrossRefGoogle Scholar
  76. 76.
    Thomas JH, Neff NF, Botstein D (1985) Isolation and characterization of mutations in the beta-tubulin gene of Saccharomyces cerevisiae. Genetics 111: 715–734PubMedGoogle Scholar
  77. 77.
    Kunkel W (1980) Effects of the antimicrotubular cancerostatic drug nocodazole on the yeast Saccharomyces cerevisiae. Z Allg Mikrobiol 20: 315–324PubMedCrossRefGoogle Scholar
  78. 78.
    Marcireau C, Guilloton M, Karst F (1990) In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property. Antimicrob Agents Chemother 34: 989–993PubMedGoogle Scholar
  79. 79.
    Moebius FF, Bermoser K, Reiter RJ, Hanner M, Glossmann H (1996) Yeast sterol C8-C7 isomerase: identification and characterization of a high-affinity binding site for enzyme inhibitors. Biochemistry 35: 16871–16878PubMedCrossRefGoogle Scholar
  80. 80.
    Sobell HM (1985) Actinomycin and DNA transcription. Proc Natl Acad Sci USA 82: 5328–5331PubMedCrossRefGoogle Scholar
  81. 81.
    Hernandez F, Cannon M (1982) Inhibition of protein synthesis in Saccharomyces cerevisiae by the 12,13-epoxytrichothecenes trichodermol, diacetoxyscirpenol and verrucarin A. Reversibility of the effects. J Antibiot (Tokyo) 35: 875–881Google Scholar
  82. 82.
    Schroeder R, Waldsich C, Wank H (2000) Modulation of RNA function by aminoglycoside antibiotics. Embo J 19: 1–9PubMedCrossRefGoogle Scholar
  83. 83.
    Kitagawa I, Kobayashi M, Imamoto T, Yasuzawa T, Kyogoku Y (1981) The structures of six antifungal oligoglycosides, stichlorosides A1, A2, B1, B2, C1 and C2, from the sea cucumber Stichopus chloronotus (BRANDT). Chem Pharm Bull 29: 2387–2391Google Scholar
  84. 84.
    Schmidt EW, Bewley CA, Faulkner DJ (1998) Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid sponge Theonella swinhoei from Palau and Mozambique. J Org Chem 63: 1254–1258CrossRefGoogle Scholar
  85. 85.
    Pan X, Yuan DS, Xiang D, Wang X, Sookhai-Mahadeo S, Bader JS, Hieter P, Spencer F, Boeke JD (2004) A robust toolkit for functional profiling of the yeast genome. Mol Cell 16: 487–496PubMedCrossRefGoogle Scholar
  86. 86.
    Ford PW, Gustafson KR, McKee T, Shigematsu N, Maurizi L, Pannell L, Williams D, Dilip de Silva E, Lassota P, Allen T et al (1999) Papuamides A-D, HIV-inhibitory and cytotoxic depsipeptides from the sponges Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J Am Chem Soc 121: 5899–5909CrossRefGoogle Scholar
  87. 87.
    Kiyono K, Miura K, Kushima Y, Hikiji T, Fukushima M, Shibuya I, Ohta A (1987) Primary structure and product characterization of the Saccharomyces cerevisiae CHO1 gene that encodes phosphatidylserine synthase. J Biochem (Tokyo) 102: 1089–1100Google Scholar
  88. 88.
    Natarajan P, Wang J, Hua Z, Graham TR (2004) Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc Natl Acad Sci USA 101: 10614–10619PubMedCrossRefGoogle Scholar
  89. 89.
    Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JC (2003) Drs2prelated P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell 14: 1240–1254PubMedCrossRefGoogle Scholar
  90. 90.
    Bechinger B (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol 156: 197–211PubMedCrossRefGoogle Scholar
  91. 91.
    Makino A, Baba T, Fujimoto K, Iwamoto K, Yano Y, Terada N, Ohno S, Sato SB, Ohta A, Umeda M et al (2003) Cinnamycin (Ro 09-0198) promotes cell binding and toxicity by inducing transbilayer lipid movement. J Biol Chem 278: 3204–3209PubMedCrossRefGoogle Scholar
  92. 92.
    Lamb D, Kelly D, Kelly S (1999) Molecular aspects of azole antifungal action and resistance. Drug Resist Updat 2: 390–402PubMedCrossRefGoogle Scholar
  93. 93.
    Aucott JN, Fayen J, Grossnicklas H, Morrissey A, Lederman MM, Salata RA (1990) Invasive infection with Saccharomyces cerevisiae: report of three cases and review. Rev Infect Dis 12: 406–411PubMedGoogle Scholar
  94. 94.
    Bammert GF, Fostel JM (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44: 1255–1265PubMedCrossRefGoogle Scholar
  95. 95.
    Kakeya H, Miyazaki Y, Miyazaki H, Nyswaner K, Grimberg B, Bennett JE (2000) Genetic analysis of azole resistance in the Darlington strain of Candida albicans. Antimicrob Agents Chemother 44: 2985–2990PubMedCrossRefGoogle Scholar
  96. 96.
    Anderson JB, Sirjusingh C, Parsons AB, Boone C, Wickens C, Cowen LE, Kohn LM (2003) Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 163: 1287–1298PubMedGoogle Scholar
  97. 97.
    Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT et al (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101: 7329–7334PubMedCrossRefGoogle Scholar
  98. 98.
    Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C et al (2003) Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50: 167–181PubMedCrossRefGoogle Scholar
  99. 99.
    Kaelin WG Jr (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5: 689–698PubMedCrossRefGoogle Scholar
  100. 100.
    Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, Zhang W, Yang X, Pootoolal J, Chua G, Lopez A et al (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118: 31–44PubMedCrossRefGoogle Scholar
  101. 101.
    Osmond BC, Specht CA, Robbins PW (1999) Chitin synthase III: synthetic lethal mutants and „stress related“ chitin synthesis that bypasses the CSD3/CHS6 localization pathway. Proc Natl Acad Sci USA 96: 11206–11210PubMedCrossRefGoogle Scholar
  102. 102.
    Gaughran JP, Lai MH, Kirsch DR, Silverman SJ (1994) Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J Bacteriol 176: 5857–5860PubMedGoogle Scholar
  103. 103.
    el-Sherbeini M, Clemas JA (1995) Nikkomycin Z supersensitivity of an echinocandinresistant mutant of Saccharomyces cerevisiae. Antimicrob Agents Chemother 39: 200–207PubMedGoogle Scholar
  104. 104.
    Lesage G, Sdicu AM, Menard P, Shapiro J, Hussein S, Bussey H (2004) Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167: 35–49PubMedCrossRefGoogle Scholar
  105. 105.
    Kwok TC, Ricker N, Fraser R, Chan AW, Burns A, Stanley EF, McCourt P, Cutler SR, Roy PJ (2006) A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 441: 91–95PubMedCrossRefGoogle Scholar
  106. 106.
    Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38: 896–903PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel (Switzerland) 2008

Authors and Affiliations

  • Andres Lopez
    • 1
  • Ainslie B. Parsons
    • 1
  • Corey Nislow
    • 1
  • Guri Giaever
    • 1
    • 2
  • Charles Boone
    • 1
  1. 1.Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
  2. 2.Department of Pharmaceutical Sciences and Department of Molecular and Medical Genetics, Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada

Personalised recommendations