Skip to main content

Total synthesis studies on macrocyclic pipecolic acid natural products: FK506, the antascomicins and rapamycin

  • Chapter
  • 1610 Accesses

Part of the book series: Progress in Drug Research ((PDR,volume 66))

Abstract

This chapter derives its inspiration from the challenges presented to total synthesis chemists, by a particular group of macrocyclic pipecolic acid natural products. Although there is considerable emphasis on the completed syntheses of the main characters (FK506 (1), the antascomycins (4 and 5) and rapamycin (7)), the overall complexity of the molecular problem has stimulated a wealth of new knowledge, including the development of novel strategies and the invention of new synthetic methods. The ingenious and innovative approaches to these targets have enabled new generations of analogues, and provided material to further probe the biology of these fascinating molecules. With pharmaceutical application as an immunosuppressant, as well as potential use for the treatment of cancer and neurodegenerative diseases, this family of natural products continues to inspire new and interesting science while providing solutions to healthcare problems of the world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432: 829–837

    PubMed  CAS  Google Scholar 

  2. Wilson RM, Danishefsky SJ (2006) Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. J Org Chem 71: 8329–8351

    PubMed  CAS  Google Scholar 

  3. Ball P (2001) Life’s lessons in design. Nature 409: 413–416

    PubMed  CAS  Google Scholar 

  4. Liu DR, Schultz PG (1999) Generating new molecular function: a lesson from nature. Angew Chem Int Ed 38: 37–54

    CAS  Google Scholar 

  5. Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Natural Product Reports 17: 215–234

    PubMed  CAS  Google Scholar 

  6. Newman DJ, Cragg GM, Holbeck S, Sausville EA (2002) Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr Cancer Drug Targets 2: 279–308

    PubMed  CAS  Google Scholar 

  7. Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67: 2141–2153

    PubMed  CAS  Google Scholar 

  8. Cordell GA (2003) Natural products in drug discovery — creating a new vision. Phytochem Rev 1: 261–273

    Google Scholar 

  9. Strohl WR (2000) The role of natural products in a modern drug discovery program. Drug Discovery Today 5: 39–41

    PubMed  Google Scholar 

  10. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66: 1022–1037

    PubMed  CAS  Google Scholar 

  11. Tanaka H, Kuroda A, Marusawa H, Hatanaka H, Kino T, Goto T, Hashimoto M, Taga T (1987) Structure of FK506, a novel immunosuppressant isolated from Streptomyces. J Am Chem Soc 109: 5031–5033

    CAS  Google Scholar 

  12. Kino, T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kosaka M, Aoki H, Imanaka H (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physicochemical and biological characteristics. J Antibiot 40: 1249–1255

    PubMed  CAS  Google Scholar 

  13. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, Kohsaka M, Aoki H (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot 40: 1256–1265

    PubMed  CAS  Google Scholar 

  14. Arai T, Koyama Y, Suenaga T, Honda H (1962) Ascomycin, an antifungal antibiotic. J Antibiot 15 (Ser. A): 231–232

    CAS  Google Scholar 

  15. Morisaki M, Arai T (1992) Identity of immunosuppressant FR-900520 with ascomycin. J Antibiot 45: 126–128

    PubMed  CAS  Google Scholar 

  16. Hatanaka H, Kino T, Miyata S, Inamura N, Kuroda A, Goto T, Tanaka H, Okuhara M (1988) FR-900520 and FR-900523, novel immunosuppressants isolated from a Streptomyces. II. Fermentation, isolation and physicochemical and biological characteristics. J Antibiot 41: 1592–1601

    PubMed  CAS  Google Scholar 

  17. Or YS, Clark RF, Xie Q, McAlpine J, Whittern DN, Henry R, Luly JR (1993) The chemistry of ascomycin: structure determination and synthesis of pyrazole analogs. Tetrahedron 49: 8771–8786

    CAS  Google Scholar 

  18. Florova G, Lindsay YM, Brown MS, McArthur HAI, Denoya CD, Reynolds KA (1998) Stereochemical analyses of the Streptomyces hygroscopicus var. ascomyceticus type-II dehydroquinate dehydratase and evidence for a role of the enzyme in the biosynthesis of the shikimate-derived moiety of ascomycin. J Org Chem 63: 8098–8099

    CAS  Google Scholar 

  19. Becker JW, Rotonda J, McKeever BM, Chan HK, Marcy AI, Wiederrecht G, Hermes JD, Springer JP (1993) FK-506-binding protein: Three-dimensional structure of the complex with the antagonist L-685,818. J Biol Chem 268: 11335–11339

    PubMed  CAS  Google Scholar 

  20. Dumont FJ, Staruch MJ, Koprak SL, Siekierka JJ, Lin CS, Harrison R, Sewell T, Kindt VM, Beattie TR, Wyvratt W et al (1992) The immunosuppressive and toxic effects of FK-506 are mechanistically related: Pharmacology of a novel antagonist of FK-506 and rapamycin. J Exp Med 176: 751–760

    PubMed  CAS  Google Scholar 

  21. Fehr T, Sanglier J-J, Schuler W, Gschwind L, Ponelle M, Schilling W, Wioland C (1996) Novel FKBP12 binding compounds from a Micromonospora strain. J Antibiot 49: 230–233

    PubMed  CAS  Google Scholar 

  22. Salituro GM, Zink DL, Dahl A, Nielsen J, Wu EHL, Kastner C, Dumont FJ (1995) Meridamycin: a novel nonimmunosuppressive FKBP12 ligand from Streptomyces hygroscopicus. Tetrahedron Lett 36: 997–1000

    CAS  Google Scholar 

  23. Sun Y, Hong H, Samboskyy M, Mironenko T, Leadlay PF, Haydock SF (2006) Organization of the biosynthetic gene cluster in Streptomyces sp. DSM 4137 for the novel neuroprotectant polyketide meridamycin. Microbiology 152: 3507–3515

    PubMed  CAS  Google Scholar 

  24. He M, Haltli B, Summers M, Feng X, Hucul J (2006) Isolation and characterization of meridamycin biosynthetic gene cluster from Streptomyces sp. NRRL 30748. Gene 377: 109–118

    PubMed  CAS  Google Scholar 

  25. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28: 721–726

    PubMed  CAS  Google Scholar 

  26. Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation, and characterization. J Antibiot 28: 727–732

    PubMed  CAS  Google Scholar 

  27. Swindells DCN, White PS, Findlay JA (1978) The x-ray crystal structure of rapamycin, C51H79NO13. Can J Chem 56: 2491–2492

    CAS  Google Scholar 

  28. Findlay JA, Radics L (1980) On the chemistry and high field nuclear magnetic resonance spectroscopy of rapamycin. Can J Chem 58: 579–590

    CAS  Google Scholar 

  29. McAlpine JB, Swanson SJ, Jackson M, Whittern DN (1991) Revised NMR assignments for rapamycin. J Antibiot 44: 688–690

    PubMed  CAS  Google Scholar 

  30. Lowden PAS, Wilkinson B, Bohm GA, Handa S, Floss HG, Leadlay PF, Staunton J (2001) Origin and true nature of the starter unit for the rapamycin polyketide synthase. Angew Chem Int Ed 40:777–779

    CAS  Google Scholar 

  31. Staunton J, Wilkinson B (1997) Biosynthesis of erythromycin and rapamycin. Chem Rev 97: 2611–2629

    PubMed  CAS  Google Scholar 

  32. Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341: 758–760

    PubMed  CAS  Google Scholar 

  33. Fischer G, Bang H, Mech C (1984) Detection of enzyme catalysis for cis-trans-isomerization of peptide bonds using proline-containing peptides. Biomed Biochim Acta 43: 1101–1111

    PubMed  CAS  Google Scholar 

  34. Schmid FX, Mayr LM, Mucke M, Schonbrunner ER (1993) Prolyl isomerases: role in protein folding. Adv Protein Chem 44: 25–66

    PubMed  CAS  Google Scholar 

  35. Hamilton GS, Steiner JP (1998) Immunophilins: Beyond immunosuppression. J Med Chem 41: 5119–5143

    PubMed  CAS  Google Scholar 

  36. Michnick SW, Rosen MK, Wandless TJ, Karplus M, Schreiber SL (1991) Solution structure of FKBP, a rotamase enzyme and receptor for FK506 and rapamycin. Science 252: 836–839

    PubMed  CAS  Google Scholar 

  37. Moore JM, Peattie DA, Fitzgibbon MJ, Thomson JA (1991) Solution structure of the major binding protein for the immunosuppressant FK506. Nature 351: 248–250

    PubMed  CAS  Google Scholar 

  38. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337: 476–478

    PubMed  CAS  Google Scholar 

  39. Albers MW, Walsh CT, Schreiber SL (1990) Substrate specificity for the human rotamase FKBP: a view of FK506 and rapamycin as leucine-(twisted amide)-proline mimics. J Org Chem 55: 4984–4986

    CAS  Google Scholar 

  40. Rosen MK, Standaert RF, Galat A, Nakatsuka M, Schreiber SL (1990) Inhibition of FKBP rotamase activity by immunosuppressant FK506: twisted amide surrogate. Science 248: 863–866

    PubMed  CAS  Google Scholar 

  41. Orozco M, Tirado-Rives Julian, Jorgensen WL (1993) Mechanism for the rotamase activity of FK506 binding protein from molecular dynamics simulations. Biochemistry 32: 12864–12874

    PubMed  CAS  Google Scholar 

  42. Fischer S, Michnick S, Karplus M (1993) A mechanism for rotamase catalysis by the FK506 binding protein (FKBP). Biochemistry 32: 13830–13837

    PubMed  CAS  Google Scholar 

  43. Bach RD, Mintcheva I, Kronenberg WJ, Schlegel HB (1993) Torsional barriers in α-keto amides. Model studies related to the binding site of FK5506. J Org Chem 58: 6135–6138

    CAS  Google Scholar 

  44. Belshaw PJ, Meyer SD, Johnson DD, Romo D, Ikeda Y, Andrus M, Alberg DG, Schultz LW, Clardy J, Schreiber SL (1994) Synthesis, structure and mechanism in immunophilin research. Synlett 6: 381–392

    Google Scholar 

  45. Braun W, Kallen J, Mikol V, Walkinshaw MD, Wuthrich K (1995) Three-dimensional structure and actions of immunosuppressants and their immunophilins. FASEB J 9: 63–72

    PubMed  CAS  Google Scholar 

  46. Ivery MTG (1999) A proposed molecular model for the interaction of calcineurin with the cyclosporin A-cyclophilin A complex. Bioorg Med Chem 7: 1389–1402

    PubMed  CAS  Google Scholar 

  47. Ivery MTG, Weiler L (1997) Modeling the interaction between FK506 and FKBP12: a mechanism for formation of the calcineurin inhibitory complex. Bioorg Med Chem 5: 217–232

    PubMed  CAS  Google Scholar 

  48. Schreiber SL (1991) Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251: 283–287

    PubMed  CAS  Google Scholar 

  49. Ivery MTG (2000) Immunophilins: switched on protein binding domains? Med Res Rev 20: 452–484

    PubMed  CAS  Google Scholar 

  50. Dreyfuss M, Haerri E, Hofmann H, Kobel H, Pache W, Tscherter H (1976) Cyclosporin A and C. New metabolites from Trichoderma polysporum (Link ex Pers.) Rifai. Eur J Appl Microbiol 3: 125–133

    CAS  Google Scholar 

  51. Ruegger A, Kuhn M, Lichti H, Loosli HR, Huguenin R, Quiquerez C, Von Wartburg A (1976) Cyclosporin A, a peptide metabolite from Trichoderma polysporum (Link ex Pers.) Rifai, with immunosuppressive activity. Helv Chim Acta 59: 1075–1092

    PubMed  CAS  Google Scholar 

  52. Calne RY, White DJ, Thiru S, Evans DB, McMaster P, Dunn DC, Craddock GN, Pentlow BD, Rolles K (1978) Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet 2: 1323–1327

    PubMed  CAS  Google Scholar 

  53. Borel JF (1989) Pharmacology of cyclosporine (Sandimmune). IV. Pharmacological properties in vivo. Pharm Rev 41: 259–371

    CAS  Google Scholar 

  54. Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341: 755–757

    PubMed  CAS  Google Scholar 

  55. Knapp W, Rieber P, Dorken B, Schmidt RE, Stein H, vd Borne AE (1989) Towards a better definition of human leucocyte surface molecules. Immunology Today 10: 253–258

    PubMed  CAS  Google Scholar 

  56. Crabtree GR (1989) Contingent genetic regulatory events in T lymphocyte activation. Science 243: 355–361

    PubMed  CAS  Google Scholar 

  57. Hinterding K, Alonso-Diaz D, Waldmann H (1998) Organic synthesis and biological signal transduction. Angew Chem Int Ed 37: 688–749

    CAS  Google Scholar 

  58. Thomas G (2002) The S6 kinase signaling pathway in the control of development and growth. Bio Res 35: 305–313

    CAS  Google Scholar 

  59. Friedman J, Weissman I (1991) Two cytoplasmic candidates for immunophilin action are revealed by affinity for a new cyclophilin: one in the presence and one in the absence of CsA. Cell 66: 799–806

    PubMed  CAS  Google Scholar 

  60. Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66: 807–815

    PubMed  CAS  Google Scholar 

  61. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43

    PubMed  CAS  Google Scholar 

  62. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369: 756–758

    PubMed  CAS  Google Scholar 

  63. Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE et al (1995) Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 378: 641–644

    PubMed  CAS  Google Scholar 

  64. Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA (1995) X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell 82: 507–522

    PubMed  CAS  Google Scholar 

  65. Choi J, Chen J, Schreiber SL, Clardy J (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273: 239–242

    PubMed  CAS  Google Scholar 

  66. Hamilton GS, Huang W, Connolly MA, Ross DT, Guo H, Valentine HL, Suzdak PD, Steiner JP (1997) FKBP12-binding domain analogs of FK506 are potent, nonimmuno-suppressive neurotrophic agents in vitro and promote recovery in a mouse model of Parkinson’s disease. Bioorg Med Chem Lett 7: 1785–1790

    CAS  Google Scholar 

  67. Gold BG (2000) Neuroimmunophilin ligands: evaluation of their therapeutic potential for the treatment of neurological disorders. Exp Opin Invest Drugs 9: 2331–2342

    CAS  Google Scholar 

  68. Snyder SH, Sabatini DM, Lai MM, Steiner JP, Hamilton GS, Suzdak PD (1998) Neural actions of immunophilin ligands. Trends Pharmacol Sci 19: 21–26

    PubMed  CAS  Google Scholar 

  69. Poulter MO, Payne KB, Steiner JP (2004) Neuroimmunophilins: A novel drug therapy for the reversal of neurodegenerative disease? Neuroscience 128: 1–6

    PubMed  CAS  Google Scholar 

  70. Gold BG (1999) FK506 and the role of the immunophilin FKBP-52 in nerve regeneration. Drug Metab Rev 31: 649–663

    PubMed  CAS  Google Scholar 

  71. Gold BG, Densmore V, Shou W, Matzuk MM, Gordon HS (1999) Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506. J Pharmacol Exp Ther 289: 1202–1210

    PubMed  CAS  Google Scholar 

  72. Price RD, Yamaji T, Yamamoto H, Higashi Y, Hanaoka K, Yamazaki S, Ishiye M, Aramori I, Matsuoka N, Mutoh S et al (2005) FK1706, a novel non-immunosuppressive immunophilin: neurotrophic activity and mechanism of action. Eur J Pharm 509: 11–19

    CAS  Google Scholar 

  73. Revill WP, Voda J, Reeves CR, Chung L, Schirmer A, Ashley G, Carney JR, Fardis M, Carreras CW, Zhou Y et al (2002) Genetically engineered analogs of ascomycin for nerve regeneration. J Pharmacol Exp Ther 302: 1278–1285

    PubMed  CAS  Google Scholar 

  74. Gold BG, Nutt JG (2002) Neuroimmunophilin ligands in the treatment of Parkinson’s disease. Curr Opin Pharmacol 2: 82–86

    PubMed  CAS  Google Scholar 

  75. Sauer H, Francis JM, Jiang H, Hamilton GS, Steiner JP (1999) Systemic treatment with GPI 1046 improves spatial memory and reverses cholinergic neuron atrophy in the medial septal nucleus of aged mice. Brain Res 842: 109–118

    PubMed  CAS  Google Scholar 

  76. Suehiro E, Singleton RH, Stone JR, Povlishock JT (2001) The immunophilin ligand FK506 attenuates the axonal damage associated with rapid rewarming following posttraumatic hypothermia. Exp Neurol 172: 199–210

    PubMed  CAS  Google Scholar 

  77. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124: 471–484

    PubMed  CAS  Google Scholar 

  78. Huang S, Houghton PJ (2003) Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 3: 371–377

    PubMed  CAS  Google Scholar 

  79. Smolewski P (2006) Recent developments in targeting the mammalian target of rapamycin (mTOR) kinase pathway. Anti-Cancer Drugs 17: 487–494

    PubMed  CAS  Google Scholar 

  80. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5: 671–688

    PubMed  CAS  Google Scholar 

  81. Wallemacq PE (1996) Recent developments with immunosuppressant macrolides: tacrolimus and sirolimus. Expert Opin Inv Drugs 5: 225–238

    CAS  Google Scholar 

  82. Vignot S, Faivre S, Aguirre D, Raymond E (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16: 525–537

    PubMed  CAS  Google Scholar 

  83. Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3’ kinase/Akt pathways. Oncogene 24: 7443–7454

    PubMed  CAS  Google Scholar 

  84. Gschwendt M (1999) Protein kinase Cσ. Eur J Biochem 259: 555–564

    PubMed  CAS  Google Scholar 

  85. Steinberg SF (2004) Distinctive activation mechanisms and functions for protein kinase Cσ. Biochem J 384: 449–459

    PubMed  CAS  Google Scholar 

  86. Fang JY, Richardson BC (2005) The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6: 322–327

    PubMed  CAS  Google Scholar 

  87. Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23: 3151–3171

    PubMed  CAS  Google Scholar 

  88. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18: 1926–1945

    PubMed  CAS  Google Scholar 

  89. Kishimoto H, Hamada K, Saunders M, Backman S, Sasaki T, Nakano T, Mak TW, Suzuki A (2003) Physiological functions of PTEN in mouse tissues. Cell Struct Funct 28: 11–21

    PubMed  CAS  Google Scholar 

  90. Romer L, Klein C, Dehner A, Kessler H, Buchner J (2006) p53 — A natural cancer killer: structural insights and therapeutic concepts. Angew Chem Int Ed 45: 6440–6460

    CAS  Google Scholar 

  91. Volante RP (1991) Total synthesis of (—) FK506. Strategies Tactics Org Synth 3: 463–494

    CAS  Google Scholar 

  92. Jones TK, Mills SG, Reamer RA, Askin D, Desmond R, Volante RP, Shinkai I (1989) Total synthesis of immunosuppressant (—)-FK-506. J Am Chem Soc 111: 1157–1159

    CAS  Google Scholar 

  93. Jones TK, Reamer RA, Desmond R, Mills SG (1990) Chemistry of tricarbonyl hemiketals and application of Evans technology to the total synthesis of the immunosuppressant (—)-FK-506. J Am Chem Soc 112: 2998–3017

    CAS  Google Scholar 

  94. Nakatsuka M, Ragan JA, Sammakia T, Smith DB, Uehling DE, Schreiber SL (1990) Total synthesis of FK506 and an FKBP probe reagent, [C(8),C(9)-13C2]-FK506. J Am Chem Soc 112: 5583–5601

    CAS  Google Scholar 

  95. Ireland RE, Gleason JL, Gegnas LD, Highsmith TK (1996) A total synthesis of FK-506. J Org Chem 61: 6856–6872

    PubMed  CAS  Google Scholar 

  96. Ireland RE, Liu L, Roper TD (1997) Total synthesis of FK-506. Part 1. Construction of the C16–C34 fragment. Tetrahedron 53: 13221–13256

    CAS  Google Scholar 

  97. Ireland RE, Liu L, Roper TD, Gleason JL (1997) Total synthesis of FK-506. Part 2. Completion of the synthesis. Tetrahedron 53: 13257–13284

    CAS  Google Scholar 

  98. Gu, RL, Sih CJ (1990) Synthesis of the C10–C34 segment of the immunosuppressant FK506. Tetrahedron Lett 31: 3287–3290

    CAS  Google Scholar 

  99. Jones, AB, Villalobos A, Linde RG II, Danishefsky SJ (1990) A formal synthesis of FK-506. Exploration of some alternatives to macrolactamization. J Org Chem 55: 2786–2797

    CAS  Google Scholar 

  100. Smith AB III, Chen K, Robinson DJ, Laakso LM, Hale KJ (1994) Formal total synthesis of FK506. Concise construction of the C(10)–C(34) segment via an effective coupling tactic. Tetrahedron Lett 35: 4271–4274

    CAS  Google Scholar 

  101. Brittain DEA, Griffiths-Jones CM, Linder MR, Smith MD, McCusker C, Barlow JS, Akiyama R, Yasuda K, Ley SV (2005) Total synthesis of antascomicin B. Angew Chem Int Ed 44: 2732–2737

    CAS  Google Scholar 

  102. Chakraborty TK, Mohan BK (2006) Studies directed towards the synthesis of antascomicin A: stereoselective synthesis of the C1–C21 fragment of the molecule. Tetrahedron Lett 47: 4999–5002

    CAS  Google Scholar 

  103. Chakraborty TK, Mohan BK, Sreekanth M (2006) Studies directed towards the synthesis of antascomicin A: stereoselective synthesis of the C22–C34 fragment of the molecule. Tetrahedron Lett 47: 5003–5005

    CAS  Google Scholar 

  104. Farooq A, Anjum S, Choudhary MI, Atta-Ur-Rahman (1998) Degradative and synthetic studies on rapamycin, a potent immunosuppressant. Curr Org Chem 2: 281–328

    CAS  Google Scholar 

  105. Norley MC (1996) Synthetic approaches to rapamycin. Contemp Org Synth 3: 345–371

    CAS  Google Scholar 

  106. Caufield CE (1995) Structure-activity relationships involving modifications to the macrolides FK-506 and rapamycin. Curr Pharm Design 1: 145–160

    CAS  Google Scholar 

  107. Nicolaou KC, Chakraborty TK, Piscopio AD, Minowa N, Bertinato P (1993) Total synthesis of rapamycin. J Am Chem Soc 115: 4419–4420

    CAS  Google Scholar 

  108. Nicolaou KC, Piscopio AD, Bertinato P, Chakraborty TK, Minowa N, Koide K (1995) Total synthesis of rapamycin. Chem-Eur J 1: 318–333

    CAS  Google Scholar 

  109. Romo D, Meyer SD, Johnson DD, Schreiber SL (1993) Total synthesis of (-)-rapamycin using an Evans-Tishchenko fragment coupling. J Am Chem Soc 115: 7906–7907

    CAS  Google Scholar 

  110. Hayward CM, Yohannes D, Danishefsky SJ (1993) Total synthesis of rapamycin via a novel titanium-mediated aldol macrocyclization reaction. J Am Chem Soc 115: 9345–9346

    CAS  Google Scholar 

  111. Smith AB III, Condon SM, McCauley JA, Leazer JL Jr, Leahy JW, Maleczka RE Jr (1995) Total synthesis of rapamycin and demethoxyrapamycin. J Am Chem Soc 117: 5407–5408

    CAS  Google Scholar 

  112. Smith AB III, Condon SM, McCauley JA, Leazer JL Jr, Leahy JW, Maleczka RE Jr (1997) A unified total synthesis of the immunomodulators (—)-rapamycin and (—)-27-demethoxyrapamycin: construction of the C (21–42) perimeters. J Am Chem Soc 119: 947–961

    CAS  Google Scholar 

  113. Smith AB III, Condon SM, McCauley JA, Leazer JL Jr, Leahy JW, Maleczka RE Jr (1997) A unified total synthesis of the immunomodulators (—)-rapamycin and (—)-27-demethoxyrapamycin: assembly of the common C(1–20) perimeter and final elaboration. J Am Chem Soc 119: 962–973

    CAS  Google Scholar 

  114. Maddess ML, Tackett MN, Watanabe H, Brennan PE, Spilling CD, Scott JS, Osborn DP, Ley SV (2007) Total synthesis of rapamycin. Angew Chem Int Ed 46: 591–597

    CAS  Google Scholar 

  115. Askin D, Reamer RA, Jones TK, Volante RP, Shinkai I (1989) Chemistry of FK-506: benzilic acid rearrangement of the tricarbonyl system. Tetrahedron Lett 30: 671–674

    CAS  Google Scholar 

  116. Askin D, Reamer RA, Joe D, Volante RP, Shinkai I (1989) A mechanistic study of the FK-506 tricarbonyl system rearrangement: synthesis of C.9 labeled FK-506. Tetrahedron Lett 30: 6121–6124

    CAS  Google Scholar 

  117. Evans DA (1982) Studies in asymmetric synthesis. The development of practical chiral enolate synthons. Aldrichimica Acta 15: 23–32

    CAS  Google Scholar 

  118. Evans DA, Nelson JV, Vogel E, Taber TR (1981) Stereoselective aldol condensations via boron enolates. J Am Chem Soc 103: 3099–3111

    CAS  Google Scholar 

  119. Mills S, Desmond R, Reamer RA, Volante RP, Shinkai I (1988) Diastereospecific, nonracemic synthesis of the C-20 to C-34 segment of the novel immunosuppressant FK-506. Tetrahedron Lett 29: 281–284

    CAS  Google Scholar 

  120. Corey EJ, Enders D, Bock MG (1976) A simple and highly effective route to α,β-unsaturated aldehydes. Tetrahedron Lett 17: 7–1

    Google Scholar 

  121. Schlessinger RH, Poss MA, Richardson S, Lin P (1985) The vinylogation of aldehydes: an improved method for the preparation of alpha formylethylidenetriphenylphosphorane, and an improved alpha silyl imine reagent of propionaldehyde. Tetrahedron Lett 26: 2391–2394

    CAS  Google Scholar 

  122. Desmond R, Mills SG, Volante RP, Shinkai I (1988) A highly selective method for the synthesis of (E)-α-methyl-α,β-unsaturated aldehydes. Tetrahedron Lett 29: 3895–3898

    CAS  Google Scholar 

  123. Evans DA, Bartroli J, Shih TL (1981) Enantioselective aldol condensations. 2. Erythroselective chiral aldol condensations via boron enolates. J Am Chem Soc 103: 2127–2129

    CAS  Google Scholar 

  124. Braun M, Devant R (1984) (R)-and (S)-2-Acetoxy-1,1,2-triphenylethanol — effective synthetic equivalents of a chiral acetate enolate. Tetrahedron Lett 25: 5031–5034

    CAS  Google Scholar 

  125. Braun M, Graf S, Herzog S (1995) (R)-(+)-2-Hydroxy-1,2,2-triphenylethyl acetate (1,2-ethanediol, 1,1,2-triphenyl-, 2-acetate, (R)-). Org Syn 72: 32–37

    CAS  Google Scholar 

  126. Kimball DB, Silks LA III (2006) Current progress in the acetate/methyl ketone aldol reaction. Curr Org Chem 10: 1975–1992

    CAS  Google Scholar 

  127. Evans DA, Sjogren EB, Weber AE, Conn RE (1987) Asymmetric synthesis of anti-β-hydroxy-α-amino acids. Tetrahedron Lett 28: 39–42

    CAS  Google Scholar 

  128. Poss CS, Schreiber SL (1994) Two-directional chain synthesis and terminus differentiation. Acc Chem Res 27: 9–17

    CAS  Google Scholar 

  129. Spivey AC, Andrews BI, Brown AD (2002) Asymmetric desymmetrization-exploiting symmetry to expedite organic synthesis. Recent Res Develop Org Chem 6: 147–167

    CAS  Google Scholar 

  130. Askin D, Volante RP, Reamer RA, Ryan KM, Shinkai I (1988) A diastereospecific, nonracemic synthesis of the C-10 to C-18 segment of FK-506. Tetrahedron Lett 29: 277–280

    CAS  Google Scholar 

  131. Schreiber SL, Schreiber TS, Smith DB (1987) Reactions that proceed with a combination of enantiotopic group and diastereotopic face selectivity can deliver products with very high enantiomeric excess: experimental support of a mathematical model. J Am Chem Soc 109: 1525–1529

    CAS  Google Scholar 

  132. Bartlett PA, Jernstedt KK (1977) “Phosphate extension”. A stratagem for the stereoselective functionalization of acyclic homoallylic alcohols. J Am Chem Soc 99: 4829–4830

    CAS  Google Scholar 

  133. Rossiter BE, Sharpless KB (1984) Asymmetric epoxidation of homoallylic alcohols. Synthesis of (−)-γ-amino-β-(R)-hydroxybutyric acid (GABOB). J Org Chem 49: 3707–3711

    CAS  Google Scholar 

  134. Bongini A, Cardillo G, Orena M, Porzi G, Sandri S (1982) Regio-and stereocontrolled synthesis of epoxy alcohols and triols from allylic and homoallylic alcohols via iodocarbonates. J Org Chem 47: 4626–4633

    CAS  Google Scholar 

  135. Bartlett PA, Meadows JD, Brown EG, Morimoto A, Jernstedt KK (1982) Carbonate extension. A versatile procedure for functionalization of acyclic homoallylic alcohols with moderate stereocontrol. J Org Chem 47: 4013–4018

    CAS  Google Scholar 

  136. Duan JJW, Smith AB III (1993) Iodine monobromide (IBr) at low temperature: enhanced diastereoselectivity in electrophilic cyclizations of homoallylic carbonates. J Org Chem 58: 3703–3711

    CAS  Google Scholar 

  137. Babine RE (1986) Asymmetric epoxidation of divinyl carbinol: a new approach to the synthesis of 2,6-dideoxyhexoses. Tetrahedron Lett 27: 5791–5794

    CAS  Google Scholar 

  138. Kahn SD, Hehre WJ (1985) Conformational analysis of 3-buten-2-ol: a model asymmetric olefin. Tetrahedron Lett 26: 3647–3650

    CAS  Google Scholar 

  139. Buss AD, Warren S (1981) Stereochemically pure E-and Z-alkenes by the Wittig-Horner reaction. J Chem Soc Chem Commun 3: 100–101

    Google Scholar 

  140. Buss AD, Warren S (1983) cis-Olefins from the Horner-Wittig reaction; origin and optimization of stereochemistry. Tetrahedron Lett 24: 3931–3934

    CAS  Google Scholar 

  141. Ayrey PM, Bolton MA, Buss AD, Greeves N, Levin D, Wallace P, Warren S (1992) Stereochemically controlled synthesis of unsaturated alcohols by the Horner-Wittig reaction. J Chem Soc Perkin Trans 1: 3407–3417

    Google Scholar 

  142. Scheid G, Ruijter E, Konarzycka-Bessler M, Bornscheuer UT, Wessjohann LA (2004) Synthesis and resolution of a key building block for epothilones: a comparison of asymmetric synthesis, chemical and enzymatic resolution. Tetrahedron Asymm 15: 2861–2869

    CAS  Google Scholar 

  143. Corey EJ, Erickson BW (1971) Oxidative hydrolysis of 1,3-dithiane derivatives to carbonyl compounds using N-halosuccinimide reagents. J Org Chem 36: 3553–3560

    CAS  Google Scholar 

  144. Askin D, Joe D, Reamer RA, Volante RP, Shinkai I (1990) Efficient degradation of FK-506 to a versatile synthetic intermediate. J Org Chem 55: 5451–5454

    CAS  Google Scholar 

  145. Hamada Y, Kato S, Shioiri T (1985) New methods and reagents in organic synthesis. 51. A synthesis of ascidiacyclamide, a cytotoxic cyclic peptide from ascidian — determination of its absolute configuration. Tetrahedron Lett 26: 3223–3226

    CAS  Google Scholar 

  146. Sakaitani M, Ohfune Y (1985) Selective transformation of N-tert-butoxycarbonyl group into N-alkoxycarbonyl group via N-carboxylate ion equivalent. Tetrahedron Lett 26: 5543–5546

    CAS  Google Scholar 

  147. Bald E, Saigo K, Mukaiyama T (1975) Facile synthesis of carboxamides by using 1-methyl-2-halopyridinium iodides as coupling reagents. Chem Lett 11: 1163–1166

    Google Scholar 

  148. Dess DB, Martin JC (1991) A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J Am Chem Soc 113: 7277–7287

    CAS  Google Scholar 

  149. Schreiber SL, Smith DB (1989) Studies relating to the synthesis of the immunosuppressive agent FK-506: synthesis of the cyclohexyl moiety via a group-selective epoxidation. J Org Chem 54: 9–10

    CAS  Google Scholar 

  150. Hanson RM (2002) Epoxide migration (Payne rearrangement) and related reactions. Org React 60: 1–156

    CAS  Google Scholar 

  151. Ireland RE, Mueller RH (1972) Claisen rearrangement of allyl esters. J Am Chem Soc 94: 5897–5898

    CAS  Google Scholar 

  152. Danishefsky S, Funk RL, Kerwin JF Jr (1980) Claisen rearrangements of lactonic (silyl) enolates: a new route to functionalized cycloalkenes. J Am Chem Soc 102: 6889–6891

    CAS  Google Scholar 

  153. Castro AMM (2004) Claisen rearrangement over the past nine decades. Chem Rev 104: 2939–3002

    CAS  Google Scholar 

  154. Evans DA, Fu GC, Hoveyda AH (1988) Rhodium(I)-catalyzed hydroboration of olefins. The documentation of regio-and stereochemical control in cyclic and acyclic systems. J Am Chem Soc 110: 6917–6918

    CAS  Google Scholar 

  155. Noyori R, Ohkuma T, Kitamura M, Takaya H, Sayo N, Kumobayashi H, Akutagawa S (1987) Asymmetric hydrogenation of β-keto carboxylic esters. A practical, purely chemical access to β-hydroxy esters in high enantiomeric purity. J Am Chem Soc 109: 5856–5858

    CAS  Google Scholar 

  156. Fráter G, Müller U, Günther W (1984) The stereoselective α-alkylation of chiral β-hydroxy esters and some applications thereof. Tetrahedron 40: 1269–1277

    Google Scholar 

  157. Seebach D, Aebi J, Wasmuth D (1985) Diastereoselective α-alkylation of β-hydroxycarboxylic esters through alkoxide enolates: diethyl (2S,3R)-(+)-3-allyl-2-hydroxysuccinate from diethyl (S)-(-)-malate. Org Synth 63: 109–120

    CAS  Google Scholar 

  158. Reetz MT, Kesseler K, Jung A (1984) Concerning the role of Lewis acids in chelation-controlled addition to chiral alkoxy aldehydes. Tetrahedron Lett 25: 729–732

    CAS  Google Scholar 

  159. Burgess EM, Penton HR Jr, Taylor EA (1973) Thermal reactions of alkyl N-carbomethoxysulfamate esters. J Org Chem 38: 26–31

    CAS  Google Scholar 

  160. Ragan JA, Nakatsuka M, Smith DB, Uehling DE, Schreiber SL (1989) Studies of the immunosuppressive agent FK-506: synthesis of an advanced intermediate. J Org Chem 54: 4267–4268

    CAS  Google Scholar 

  161. Gilbert JC, Weerasooriya U (1979) Elaboration of aldehydes and ketones to alkynes: improved methodology. J Org Chem 44: 4997–4998

    CAS  Google Scholar 

  162. Hart DW, Schwartz J (1974) Hydrozirconation. Organic synthesis via organozirconium intermediates. Synthesis and rearrangement of alkylzirconium(IV) complexes and their reaction with electrophiles. J Am Chem Soc 96: 8115–8816

    CAS  Google Scholar 

  163. Labinger JA, Hart DW, Seibert WE III, Schwartz J (1975) Electrophilic cleavage of the carbon-zirconium(IV) bond. Comparison and contrast with other transition metal alkyl systems. J Am Chem Soc 97: 3851–3852

    CAS  Google Scholar 

  164. Schreiber SL, Sammakia T, Uehling DE (1989) Studies relating to the synthesis of the immunosuppressive agent FK-506: application of the two-directional chain synthesis strategy to the pyranose moiety. J Org Chem 54: 15–16

    CAS  Google Scholar 

  165. Greenberg S, Moffatt JG (1973) Reactions of 2-acyloxyisobutyryl halides with nucleosides. I. Reactions of model diols and of uridine. J Am Chem Soc 95: 4016–4025

    PubMed  CAS  Google Scholar 

  166. Hoye TR, Peck DR, Swanson TA (1984) Kinetic lactonization of 4,6-dimethyl-and 2,4,6,8-tetramethyl-5-hydroxyazelaic acids: ground state conformational control. J Am Chem Soc 106: 2738–2739

    CAS  Google Scholar 

  167. Ireland RE, Highsmith TK, Gegnas LD, Gleason JL (1992) Synthesis of the 9,10-acetonide of 9-dihydro-FK-506. J Org Chem 57: 5071–5073

    CAS  Google Scholar 

  168. Fisher MJ, Chow K, Villalobos A, Danishefsky SJ (1991) On the remarkable propensity for carbon-carbon bond cleavage reactions in the C(8)-C(10) region of FK-506. J Org Chem 56: 2900–2907

    CAS  Google Scholar 

  169. Baumann K, Oberhauser B, Grassberger MA, Haidl G, Schulz G (1995) Synthesis and oxidative cleavage of the major equilibrium products of ascomycin and FK 506. Tetrahedron Lett 36: 2231–2234

    CAS  Google Scholar 

  170. Adams MA, Duggan AJ, Smolanoff J, Meinwald J (1979) Total synthesis of (±)-pederamide. J Am Chem Soc 101: 5364–5370

    CAS  Google Scholar 

  171. Tanaka H, Kuroda A, Marusawa H, Hashimoto M, Hatanaka H, Kino T, Goto T, Okuhara M (1987) Physicochemical properties of FK-506, a novel immunosuppressant isolated from Streptomyces tsukubaensis. Transplant P 19: 11–16

    CAS  Google Scholar 

  172. Ireland RE, Wipf P, Miltz W, Vanasse B (1990) Methodology for the enantioselective synthesis of aldols and other 1,3-dioxygenated systems. J Org Chem 55: 1423–1424

    CAS  Google Scholar 

  173. Hicks DR, Fraser-Reid B (1975) The 2-and 3-C-methyl derivatives of methyl 2,3-dideoxy-α-D-erythro-hex-2-enopyranosoid-4-ulose. Can J Chem 53: 2017–2023

    Google Scholar 

  174. Hanessian S, Rancourt G (1977) Carbohydrates as chiral intermediates in organic synthesis. Two functionalized chemical precursors comprising eight of the ten chiral centres of erythronolide A. Can J Chem 55: 1111–1113

    CAS  Google Scholar 

  175. Sum P-E, Weiler L (1982) Stereoselective synthesis of (-)-α-multistriatin from D-glucose. Can J Chem 60: 327–334

    CAS  Google Scholar 

  176. Ireland RE, Muchmore DC, Hengartner U (1972) N,N,N′,N′-Tetramethylphosphorodiamidate group. Useful function for the protection or reductive deoxygenation of alcohols and ketones. J Am Chem Soc 94: 5098–5100

    CAS  Google Scholar 

  177. Ireland RE, Dow WC, Godfrey JD, Thaisrivongs S (1984) Total synthesis of (±)-aphidicolin and (±)-β-chamigrene. J Org Chem 49: 1001–1013

    CAS  Google Scholar 

  178. Albright JD, Goldman L (1967) Dimethyl sulfoxide-acid anhydride mixtures for the oxidation of alcohols. J Am Chem Soc 89: 2416–2423

    CAS  Google Scholar 

  179. Ramachandran PV (2002) Pinane-based versatile “allyl” boranes. Aldrichimica Acta 35: 23–35

    CAS  Google Scholar 

  180. Brown HC, Ramachandran PV (1995) Versatile α-pinene-based borane reagents for asymmetric syntheses. J Organomet Chem 500: 1–19

    CAS  Google Scholar 

  181. Mihelich ED, Daniels K, Eickhoff DJ (1981) Vanadium-catalyzed epoxidations. 2. Highly stereoselective epoxidations of acyclic homoallylic alcohols predicted by a detailed transition-state model. J Am Chem Soc 103: 7690–7692

    CAS  Google Scholar 

  182. Anderson CD, Goodman L, Baker BR (1958) Potential anticancer agents. VII. Synthesis and ammonolysis of methyl 2,3-anhydro-D-ribofuranoside. J Am Chem Soc 80: 5247–5252

    CAS  Google Scholar 

  183. Jenkins SR, Walton E (1973) Synthesis of 9-(3-deoxy-3-C-methyl-β-D-xylofuranosyl) adenine. Branched-chain sugar analog of cordycepin. Carbohyd Res 26: 71–81

    CAS  Google Scholar 

  184. Theis AB, Townsend CA (1981) A simple, inexpensive preparation of highly pure copper(I) bromide and its dimethyl sulfide complex. Syn Commun 11: 157–166

    CAS  Google Scholar 

  185. DeShong P, Waltermire RE, Ammon HL (1988) A general approach to the stereoselective synthesis of spiroketals. A total synthesis of the pheromones of the olive fruit fly and related compounds. J Am Chem Soc 110: 1901–1910

    CAS  Google Scholar 

  186. Mori K, Senda S (1985) Pheromone synthesis. 70. Synthesis of the enantiomers of cis-2-methyl-5-hexanolide, the major component of the sex pheromone of the carpenter bee. Tetrahedron 41: 541–546

    CAS  Google Scholar 

  187. Rand CL, Van Horn DE, Moore MW, Negishi E (1981) A versatile and selective route to difunctional trisubstituted (E)-alkene synthons via zirconium-catalyzed carboalumination of alkynes. J Org Chem 46: 4093–4096

    CAS  Google Scholar 

  188. Negishi E, Van Horn DE, Yoshida T (1985) Controlled carbometalation. 20. Carbometalation reaction of alkynes with organoalene-zirconocene derivatives as a route to stereo-and regiodefined trisubstituted alkenes. J Am Chem Soc 107: 6639–6647

    CAS  Google Scholar 

  189. Wipf P (1993) Transmetalation reactions in organocopper chemistry. Synthesis 6: 537–557

    Google Scholar 

  190. Coleman RS, Danishefsky SJ (1989) Degradation and manipulations of the immunosuppressant FK506: preparation of potential synthetic intermediates. Heterocycles 28: 157–161

    CAS  Google Scholar 

  191. Nakajima N, Horita K, Abe R, Yonemitsu O (1988) MPM (4-methoxybenzyl)-protection of hydroxy functions under mild acidic conditions. Tetrahedron Lett 29: 4139–4142

    CAS  Google Scholar 

  192. Horita K, Yoshioka T, Tanaka T, Oikawa Y, Yonemitsu O (1986) On the selectivity of deprotection of benzyl, MPM (4-methoxybenzyl) and DMPM (3,4-dimethoxybenzyl) protecting groups for hydroxyl functions. Tetrahedron 42: 3021–3028

    CAS  Google Scholar 

  193. McMurry JE, Scott WJ (1980) A new method of olefin synthesis. Coupling of lithium dialkylcuprates with enol triflates. Tetrahedron Lett 21: 4313–4316

    CAS  Google Scholar 

  194. Einhorn C, Einhorn J, Luche JL (1989) Sonochemistry — the use of ultrasonic waves in synthetic organic chemistry. Synthesis 11: 787–813

    Google Scholar 

  195. Poll T, Abdel HAF, Karge R, Linz G, Weetman J, Helmchen G (1989) N-Substituted hydroxysuccinimides from (S)-malic acid as new reagents for asymmetric Diels-Alder additions to enoates. Tetrahedron Lett 30: 5595–5598

    CAS  Google Scholar 

  196. Luche JL (1978) Lanthanides in organic chemistry. 1. Selective 1,2-reductions of conjugated ketones. J Am Chem Soc 100: 2226–2227

    CAS  Google Scholar 

  197. Sumino Y, Tomisaka Y, Ogawa A (2003) Cerium reagents in organic synthesis. Materials Integration 16: 37–41

    CAS  Google Scholar 

  198. Elliott J, Hall D, Warren S (1989) Reversed stereochemical control in the regioselective reduction of hindered diphenylphosphinoyl (Ph2PO-) ketones and enones. Tetrahedron Lett 30: 601–604

    CAS  Google Scholar 

  199. Elliott J, Hall D, Warren S (1989) Reversed stereochemical control in the regioselective reduction of hindered diphenylphosphinoyl (Ph2PO-) ketones and enones. Tetrahedron Lett 30: 601–604

    CAS  Google Scholar 

  200. Garegg PJ, Johansson R, Ortega C, Samuelsson B (1982) Novel reagent system for converting a hydroxy group into an iodo group in carbohydrates with inversion of configuration. Part 3. J Chem Soc Perkin Trans 1: 681–683

    Google Scholar 

  201. Fürstner A (1993) Chemistry of and with highly reactive metals. Angew Chem Int Ed 32: 164–189

    Google Scholar 

  202. Ireland RE, Wipf P (1989) Studies directed towards the total synthesis of FK-506 preparation of a C(1) to C(15) segment. Tetrahedron Lett 30: 919–922

    CAS  Google Scholar 

  203. Somers PK, Wandless TJ, Schreiber SL (1991) Synthesis and analysis of 506BD, a high-affinity ligand for the immunophilin FKBP. J Am Chem Soc 113: 8045–8056

    CAS  Google Scholar 

  204. Rao AVR, Chakraborty TK, Reddy KL (1991) Studies directed towards the synthesis of immunosuppressive agent FK-506: synthesis of the entire bottom half. Tetrahedron Lett 32: 1251–1254

    CAS  Google Scholar 

  205. Katsuki T, Martin VS (1996) Asymmetric epoxidation of allylic alcohols: The Katsuki-Sharpless epoxidation reaction. Org React 48: 1–299

    CAS  Google Scholar 

  206. Lipshutz BH, Wilhelm RS, Kozlowski JA (1984) The chemistry of higher order organocuprates. Tetrahedron 40: 5005–5038

    CAS  Google Scholar 

  207. Corey EJ, Beames DJ (1972) Mixed cuprate reagents of type R1R2CuLi which allow selective group transfer. J Am Chem Soc 94: 7210–7211

    CAS  Google Scholar 

  208. Wovkulich PM, Shankaran K, Kiegiel J, Uskokovic MR (1993) Total synthesis of 1233A. J Org Chem 58: 832–839

    CAS  Google Scholar 

  209. Ireland RE, Wipf P, Armstrong JD III (1991) Stereochemical control in the ester enolate Claisen rearrangement. 1. Stereoselectivity in silyl ketene acetal formation. J Org Chem 56: 650–657

    CAS  Google Scholar 

  210. Pàmies O, Bäeckvall J-E (2003) Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis. Chem Rev 103: 3247–3261

    PubMed  Google Scholar 

  211. Bartlett PA, McQuaid LA (1984) Total synthesis of (±)-methyl shikimate and (±)-3-phosphoshikimic acid. J Am Chem Soc 106: 7854–7860

    CAS  Google Scholar 

  212. Gu RL, Sih CJ (1990) A chemoenzymatic synthesis of the C10–C19 moiety of FK506. Tetrahedron Lett 31: 3283–3286

    CAS  Google Scholar 

  213. Linde RG II, Egbertson M, Coleman RS, Jones AB, Danishefsky SJ (1990) Efficient preparation of intermediates corresponding to C22–C27 and C28–C34 of FK-506. J Org Chem 55: 2771–2776

    CAS  Google Scholar 

  214. Henbest HB, Wilson RAL (1957) Aspects of stereochemistry. I. Stereospecificity in formation of epoxides from cyclic allylic alcohols. J Chem Soc 1958–1965

    Google Scholar 

  215. Bernet B, Vasella A (1984) Fragmentation of 6-deoxy-6-halohexono-1,5-ortholactones: a concerted, nonstereospecific process. Helv Chim Acta 67: 1328–1347

    CAS  Google Scholar 

  216. Villalobos A, Danishefsky SJ (1990) Stereoselective routes to the C10–C19 fragment of FK-506. J Org Chem 55: 2776–2786

    CAS  Google Scholar 

  217. Maryanoff BE, Reitz AB (1989) The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem Rev 89: 863–927

    CAS  Google Scholar 

  218. Evans DA, Morrissey MM, Dow RL (1985) Hydroxyl-directed hydrogenation of homoallylic alcohols. Effects of achiral and chiral rhodium catalysts on 1,3 stereocontrol. Tetrahedron Lett 26: 6005–6008

    CAS  Google Scholar 

  219. Hoffmann RW (1989) Allylic 1,3-strain as a controlling factor in stereoselective transformations. Chem Rev 89: 1841–1860

    CAS  Google Scholar 

  220. Smith AB III, Hale KJ, Laakso LM, Chen K, Riera A (1989) FK-506 synthetic studies. 3. An efficient asymmetric synthesis of the C (24)-C (34) fragment of FK-506, FR-900520, and FR-900523. Tetrahedron Lett 30: 6963–6966

    CAS  Google Scholar 

  221. Smith AB III, Hale KJ (1989) An enantioselective synthesis of the C(10) to C(23) backbone of the potent immunosuppressant FK506. Tetrahedron Lett 30: 1037–1040

    CAS  Google Scholar 

  222. Nicolaou KC, Papahatjis DP, Claremon DA, Magolda RL, Dolle RE (1985) Total synthesis of ionophore antibiotic X-14547A. J Org Chem 50: 1440–1456

    CAS  Google Scholar 

  223. Bierer BE, Somers PK, Wandless TJ, Burakoff SJ, Schreiber SL (1990) Probing immunosuppressant action with a nonnatural immunophilin ligand. Science 250: 556–559

    PubMed  CAS  Google Scholar 

  224. Steiner JP, Dawson TM, Fotuhi M, Glatt CE, Snowman AM, Cohen N, Snyder SH (1992) High brain densities of the immunophilin FKBP colocalized with calcineurin. Nature 358: 584–587

    PubMed  CAS  Google Scholar 

  225. Gorobets EV, Miftakhov MS, Valeev FA (2000) Tandem transformations initiated and determined by the Michael reaction. Russ Chem Rev 69: 1001–1019

    CAS  Google Scholar 

  226. Banerjee DK (1974) Dieckmann cyclization and utilization of the products in the synthesis of steroids. P Indian Acad Sci A 79: 282–309

    CAS  Google Scholar 

  227. Gradillas A, Pérez-Castells J (2006) Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations. Angew Chem Int Ed 45: 6086–6101

    CAS  Google Scholar 

  228. Barlow JS, Dixon DJ, Foster AC, Ley SV, Reynolds DJ (1999) New building blocks for efficient and highly diastereoselective polyol production-synthesis and utility of (R′,R′,S,S) and (S′,S′,R,R)-2,3-butane diacetal protected butane tetrol derivatives. J Chem Soc Perkin Trans 112: 1627–1630

    Google Scholar 

  229. Dixon DJ, Foster AC, Ley SV, Reynolds DJ (1999) Preparation of desymmetrized meso-tartrate derivatives-synthesis and utility of (R′,R′,R,S)-2,3-butane diacetal protected dimethyl tartrate. J Chem Soc Perkin Trans 112: 1631–1634

    Google Scholar 

  230. Ley SV, Dixon DJ, Guy RT, Palomero MA, Polara A, Rodriguez F, Sheppard TD (2004) Studies on the generation of enolate anions from butane-2,3-diacetal protected glycolic acid derivatives and subsequent highly diastereoselective coupling reactions with aldehydes and acid chlorides. Org Biomol Chem 2: 3618–3627

    PubMed  CAS  Google Scholar 

  231. Ley SV, Baeschlin DK, Dixon DJ, Foster AC, Ince SJ, Priepke HWM, Reynolds DJ (2001) 1,2-Diacetals: A new opportunity for organic synthesis. Chem Rev 101: 53–80

    PubMed  CAS  Google Scholar 

  232. Bull, JA, Balskus EP, Horan RAJ, Langner M, Ley SV (2006) Stereocontrolled total synthesis of bengazole A: a marine bisoxazole natural product displaying potent antifungal properties. Angew Chem Int Ed 45: 6714–6718

    CAS  Google Scholar 

  233. Keck GE, Savin KA, Cressman ENK, Abbott DE (1994) Effects of olefin geometry on the stereochemistry of Lewis acid mediated additions of crotylstannanes to aldehydes. J Org Chem 59: 7889–7896

    CAS  Google Scholar 

  234. Keck GE, Abbott DE, Boden EP, Enholm EJ (1984) Observations on the choice of Lewis acid and mode of addition for the Lewis acid-mediated reaction of crotyltri-n-butylstannane with aldehydes: convenient and highly selective access to both erythro and threo products. Tetrahedron Lett 25: 3927–3930

    CAS  Google Scholar 

  235. Scholl M, Ding S, Lee CW, Grubbs RH (1999) Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org Lett 1: 953–956

    PubMed  CAS  Google Scholar 

  236. Maeta H, Hashimoto T, Hasegawa T, Suzuki K (1992) Grignard-type addition of alkenyland alkylzirconocene chloride to aldehyde: remarkable catalytic acceleration effect of silver perchlorate. Tetrahedron Lett 33: 5965–5968

    CAS  Google Scholar 

  237. Suzuki K, Hasegawa T, Imai T, Maeta H, Ohba S (1995) AgAsF6 as safe alternative to AgClO4 for generating cationic zirconocene species: utilities in Lewis acid-promoted selective C-C bond forming reactions. Tetrahedron 51: 4483–4494

    CAS  Google Scholar 

  238. Reich HJ, Chow F, Peake SL (1978) Seleninic acids as catalysts for oxidations of olefins and sulfides using hydrogen peroxide. Synthesis 4: 299–301

    Google Scholar 

  239. Yus M (1996) Arene-catalyzed lithiation reactions. Chem Soc Rev 25: 155–161

    CAS  Google Scholar 

  240. Yus M, Herrera RP, Guijarro A (2002) On the mechanism of arene-catalyzed lithiation: the role of arene dianions-naphthalene radical anion versus naphthalene dianion. Chem Eur J 8: 2574–2584

    CAS  Google Scholar 

  241. Ley SV, Norman J, Griffith WP, Marsden SP (1994) Tetrapropylammonium perruthenate, Pr4N+RuO4 , TPAP: a catalytic oxidant for organic synthesis. Synthesis 7: 639–666

    Google Scholar 

  242. Bal BS, Childers WE, Pinnick HW (1981) Oxidation of α,β-unsaturated aldehydes. Tetrahedron 37: 2091–2096

    CAS  Google Scholar 

  243. Nicolaou KC, Bulger PG, Sarlah D (2005) Metathesis reactions in total synthesis. Angew Chem Int Ed 44: 4490–4527

    CAS  Google Scholar 

  244. Batchelor MJ, Gillespie RJ, Golec JMC, Hedgecock CJR (1993) A novel application of the Dess-Martin reagent to the synthesis of an FK506 analogue and other tricarbonyl compounds. Tetrahedron Lett 34: 167–170

    CAS  Google Scholar 

  245. Hughes P, Musser J, Conklin M, Russo R (1992) The isolation, synthesis and characterization of an isomerization form of rapamycin. Tetrahedron Lett 33: 4739–4742

    CAS  Google Scholar 

  246. Kishi Y (1992) Applications of nickel(II)/chromium(II)-mediated coupling reactions to natural product syntheses. Pure Appl Chem 64: 343–350

    CAS  Google Scholar 

  247. Cintas P (1992) Addition of organochromium compounds to aldehydes: The Nozaki-Hiyama reaction. Synthesis 3: 248–257

    Google Scholar 

  248. Fürstner A (1999) Carbon-Carbon bond formation involving organochromium(III) reagents. Chem Rev 99: 991–1045

    PubMed  Google Scholar 

  249. Rao AVR, Chakraborty TK, Sankaranayanan D, Purandare AV (1991) Studies directed towards the synthesis of immunosuppressive agent FK-506: synthesis of the entire top half. Tetrahedron Lett 32: 547–550

    CAS  Google Scholar 

  250. Barton DHR, McCombie SW (1975) New method for the deoxygenation of secondary alcohols. J Chem Soc Perkin Trans 116: 1574–1585

    Google Scholar 

  251. Hartwig W (1983) Modern methods for the radical deoxygenation of alcohols. Tetrahedron 39: 2609–2645

    CAS  Google Scholar 

  252. Koch SSC, Chamberlin AR (1993) Enantioselective preparation of β-alkyl-γ-butyrolactones from functionalized ketene dithioacetals. J Org Chem 58: 2725–2737

    CAS  Google Scholar 

  253. Nicolaou KC, Bertinato P, Piscopio AD, Chakraborty TK, Minowa N (1993) Stereoselective construction of the C21-C42 fragment of rapamycin. J Chem Soc Chem Commun 7: 619–622

    Google Scholar 

  254. Nicolaou KC, Bulger PG, Sarlah D (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Ed 44: 4442–4489

    CAS  Google Scholar 

  255. Mitchell TN (1992) Palladium-catalyzed reactions of organotin compounds. Synthesis 9: 803–815

    Google Scholar 

  256. Stille JK (1985) Palladium catalyzed coupling of organotin reagents with organic electrophiles. Pure Appl Chem 57: 1771–1780

    CAS  Google Scholar 

  257. Stille JK, Tanaka M (1987) Intramolecular palladium-catalyzed cyclizations of esters containing vinyl triflate and vinylstannane groups at the termini: synthesis of large-ring lactones. J Am Chem Soc 109: 3785–3786

    CAS  Google Scholar 

  258. Pattenden G, Thom SM (1993) Polyene macrolactam construction using a Stille vinylvinyl coupling protocol: an approach to the antitumour antibiotic substance leinamycin. Synlett 3: 215–216

    Google Scholar 

  259. Koenig KE, Weber WP (1973) Reaction of deuterium chloride with cis-and trans-β-trimethylsilylstyrene. J Am Chem Soc 95: 3416–3418

    CAS  Google Scholar 

  260. Blumenkopf TA, Overman LE (1986) Vinylsilane-and alkynylsilane-terminated cyclization reactions. Chem Rev 86: 857–873

    CAS  Google Scholar 

  261. Wei CC, Bernardo SD, Tengi JP, Borgese J, Weigele M (1985) Synthesis of chiral β-lactams using L-ascorbic acid. J Org Chem 50: 3462

    CAS  Google Scholar 

  262. Luk KC, Wei CC (1988) Preparation of derivatives of (R)-1,2,4-butanetriol from l-ascorbic acid. Synthesis 3: 226–228

    Google Scholar 

  263. Wee AGH, McLeod DD (2000) Studies on the Rh(II)-catalyzed C-H insertion reaction of some derivatives of N-{4-[(S)-1,2-Dihydroxybutyl]}-α-diazo anilides: site selectivity. Heterocycles 53: 637–655

    CAS  Google Scholar 

  264. Basha A, Lipton M, Weinreb SM (1977) A mild, general method for conversion of esters to amides. Tetrahedron Lett 48: 4171–4174

    Google Scholar 

  265. Bode SE, Wolberg M, Müller M (2006) Stereoselective synthesis of 1,3-diols. Synthesis 4: 557–588

    Google Scholar 

  266. Hoveyda AH, Evans DA, Fu GC (1993) Substrate-directable chemical reactions. Chem Rev 93: 1307–1370

    CAS  Google Scholar 

  267. Oishi T, Nakata T (1990) New aspects of stereoselective synthesis of 1,3-polyols. Synthesis 8: 635–645

    Google Scholar 

  268. Mori Y, Suzuki M (1989) Stereoselective synthesis of 1,3-syn-3,5-anti-triols using a syn-1,3-asymmetric reduction: a novel route to anti-1,3-polyols. Tetrahedron Lett 30: 4383–4386

    CAS  Google Scholar 

  269. Mori Y, Kuhara M, Takeuchi A, Suzuki M (1988) Stereoselective reduction of β-alkoxy ketones: a synthesis of syn-1,3-diols. Tetrahedron Lett 29: 5419–5422

    CAS  Google Scholar 

  270. Mori Y, Takeuchi A, Kageyama H, Suzuki M (1988) A convergent general synthetic protocol for syn-1,3-polyols. Tetrahedron Lett 29: 5423–5426

    CAS  Google Scholar 

  271. Heckrodt TJ, Mulzer J (2002) Synthesis of a Diels-Alder precursor for the elisabethin A skeleton. Synthesis 13: 1857–1866

    Google Scholar 

  272. Lipshutz BH, Koerner M, Parker DA (1987) 2-Thienyl(cyano)copper lithium. A lower order, stable “cuprate in a bottle” precursor to higher order reagents. Tetrahedron Lett 28: 945–948

    CAS  Google Scholar 

  273. Lambert JB, Zhao Y, Emblidge RW, Salvador LA, Liu X, So JH, Chelius EC (1999) The β effect of silicon and related manifestations of β conjugation. Acc Chem Res 32: 183–190

    CAS  Google Scholar 

  274. Cernigliaro GJ, Kocienski PJ (1977) A synthesis of (-)-α-multistriatin. J Org Chem 42: 3622–3624

    CAS  Google Scholar 

  275. Evans DA, Mathre D (1985) Asymmetric synthesis of the enkephalinase inhibitor thiorphan. J Org Chem 50: 1830–1835

    CAS  Google Scholar 

  276. Furkert DP, Brimble MA (2002) Synthesis of the C10-C22 bis-spiroacetal domain of spirolides B and D via iterative oxidative radical cyclization. Org Lett 4: 3655–3658

    PubMed  CAS  Google Scholar 

  277. Corey EJ, Fuchs PL (1972) A synthetic method for formyl→ethynyl conversion (RCHO→RC≡CH or RC≡CR’). Tetrahedron Lett 36: 3769–3772

    Google Scholar 

  278. Hart DW, Blackburn TF, Schwartz J (1975) Hydrozirconation. III. Stereospecific and regioselective functionalization of alkylacetylenes via vinylzirconium(IV) intermediates. J Am Chem Soc 97: 679–680

    CAS  Google Scholar 

  279. Corey EJ, Bakshi RK, Shibata S, Chen CP, Singh VK (1987) A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep synthesis. J Am Chem Soc 109: 7925–7926

    CAS  Google Scholar 

  280. Corey EJ (1990) New enantioselective routes to biologically interesting compounds. Pure Appl Chem 62: 1209–1216

    CAS  Google Scholar 

  281. Kim KM, Park IH (2004) A convenient halogenation of α,β-unsaturated carbonyl compounds with Oxone and hydrohalic acid (HBr, HCl). Synthesis 16: 2641–2644

    Google Scholar 

  282. Ley SV, Whittle AJ (1981) A convenient preparation of 2-haloenones from enones using phenylselenium halides. Tetrahedron Lett 22: 3301–3304

    CAS  Google Scholar 

  283. Ito Y, Hirao T, Saegusa T (1978) Synthesis of α,β-unsaturated carbonyl compounds by palladium(II)-catalyzed dehydrosilylation of silyl enol ethers. J Org Chem 43: 1011–1013

    CAS  Google Scholar 

  284. Wick AE, Felix D, Steen K, Eschenmoser A (1964) Claisen rearrangement of allyl and benzyl alcohols by N,N-dimethylacetamide acetals. Helv Chim Acta 47: 2425–2429

    CAS  Google Scholar 

  285. Grieco PA, Gilman S, Nishizawa M (1976) Organoselenium chemistry. A facile one-step synthesis of alkyl aryl selenides from alcohols. J Org Chem 41: 1485–1486

    CAS  Google Scholar 

  286. Blanchette MA, Choy W, Davis JT, Essenfeld AP, Masamune S, Roush WR, Sakai T (1984) Horner-Wadsworth-Emmons reaction: Use of lithium chloride and an amide for base-sensitive compounds. Tetrahedron Lett 25: 2183–2186

    CAS  Google Scholar 

  287. Nakata T, Tanaka T, Oishi T (1981) Highly stereoselective synthesis of erythro-α,β-epoxy alcohols by the reduction of α,β-epoxy ketones with zinc borohydride. Tetrahedron Lett 22: 472

    Google Scholar 

  288. Nakata T, Tanaka T, Oishi (1983) Stereoselective reduction of α-hydroxy ketones. Tetrahedron Lett 24: 2653–2656

    CAS  Google Scholar 

  289. Van Rheenen V, Kelly RC, Cha DY (1976) An improved catalytic OsO4 oxidation of olefins to cis-1,2-gylcols using tertiary amine oxides as the oxidant. Tetrahedron Lett 23: 1973–1976

    Google Scholar 

  290. Takai K, Nitta K, Utimoto K (1986) Simple and selective method for aldehdyes (RCHO) → (E)-haloalkenes (RCH=CHX) Conversion by means of a haloform-chromous chloride system. J Am Chem Soc 108: 7408–7410

    CAS  Google Scholar 

  291. Okazoe T, Takai K, Utimoto K (1987) (E)-Selective olefination of aldehydes by means of gem-dichromium reagents derived by reduction of gem-diiodoalkanes with chromium(ii) chloride. J Am Chem Soc 109: 951–953

    CAS  Google Scholar 

  292. Wessjohann LA, Scheid G (1999) Recent advances in chromium(II)-and chromium(III)-mediated organic synthesis. Synthesis 1: 1–36

    Google Scholar 

  293. Corey EJ, Wollenberg RH (1974) A nucleophilic ethynyl group equivalent and its use in conjugate addition to α,β-enones. J Am Chem Soc 96: 5581–5583

    CAS  Google Scholar 

  294. Shair MD, Yoon T, Danishefsky SJ (1994) A remarkable cross coupling reaction to construct the enediyne linkage relevant to dynemicin A: synthesis of the deprotected ABC system. J Org Chem 59: 3655–3757

    Google Scholar 

  295. Takahashi T, Sakamoto Y, Yamada H, Usui Shuji, Fukazawa Y (1995) Synthesis of a dynemicin A analogue and its Bergaman-type cycloaromatization. Angew Chem Int Ed 34: 1345–1348

    CAS  Google Scholar 

  296. Shair MD, Yoon T, Danishefsky SJ (1995) Total synthesis of (±)-dynemicin A. Angew Chem Int Ed 34: 1721–1723

    CAS  Google Scholar 

  297. Clive DLJ, Bo Y, Tao Y, Daigneault S, Wu Y-J, Meignan G (1998) Synthesis of (±)-calicheamicinone by two methods. J Am Chem Soc 120: 10332–10349

    CAS  Google Scholar 

  298. Romo D, Johnson DD, Plamondon L, Miwa T, Schreiber SL (1992) Synthetic investigations of rapamycin. 2. Synthesis of a C (22)-C (42) fragment. J Org Chem 57: 5060–5063

    CAS  Google Scholar 

  299. Meyer SD, Miwa T, Nakatsuka M, Schreiber SL (1992) Synthetic investigations of rapamycin. 1. Synthesis of a C10-C21 fragment. J Org Chem 57: 5058–5560

    CAS  Google Scholar 

  300. Evans DA, Hoveyda AH (1990) Samarium-catalyzed intramolecular tishechenko reduction of β-hydroxy ketones. A stereoselective approach to the synthesis of differentiated anti 1,3-diol monoesters. J Am Chem Soc 112: 6447–6449

    CAS  Google Scholar 

  301. Tormakangas OP, Koskienen AMP (2001) The Tishchenko reaction and its modifications in organic synthesis. Recent Res Dev Org Chem 5: 225–255

    CAS  Google Scholar 

  302. Huckin SN, Weiler L (1974) Alkylation of dianions of β-keto esters. J Am Chem Soc 96: 1082–1087

    CAS  Google Scholar 

  303. Levin JI, Turos E, Weinreb SM (1982) An alternative procedure for the aluminum-mediated converstion of esters to amides. Synth Commun 12: 989–993

    CAS  Google Scholar 

  304. Chen KM, Hardtmann GE, Prasad K, Repič O, Shapiro MJ (1987) 1,3-syn-Diastereoselective reduction of β-hydroxy ketones utilizing alkoxydialkylboranes. Tetrahedron Lett 28: 155–158

    CAS  Google Scholar 

  305. Evans DA, Clark JS, Metternich R, Novack VJ, Sheppard GS (1990) Diastereoselective aldol reactions using β-keto imide derived enolates. A versatile approach to the assemblage of polypropionate systems. J Am Chem Soc 112: 866–868

    CAS  Google Scholar 

  306. Tomioka H, Takai K, Oshima K, Nozaki H (1981) Selective oxidation of a primary hydroxyl in the presence of secondary one. Tetrahedron Lett 22: 1605–1608

    CAS  Google Scholar 

  307. Hassanaly P, Dou HJM, Metzger J (1977) S-Alkylation of 2-thioxo-2,3-dihydroimidazole and its 1-methyl derivative under phase-transfer conditions. Synthesis 4: 253–254

    Google Scholar 

  308. Evans DA, Andrews GC (1974) Allylic sulfoxides: Useful intermediates in organic synthesis. Acc Chem Res 7: 147–155

    CAS  Google Scholar 

  309. Nishibayashi Y, Uemura S (2000) Selenoxide elimination and [2,3]-sigmatropic rearrangement. Top Curr Chem 208: 201–235

    CAS  Google Scholar 

  310. Suzuki T, Saimoto H, Tomioka H, Oshima K, Nozaki H (1982) Regio-and stereoselective ring opening of epoxy alcohols with organoaluminium compounds leading to 1,2-diols. Tetrahedron Lett 23: 3597–3600

    CAS  Google Scholar 

  311. Maier ME, Schöffling B (1990) Synthesis of the cyclohexyl fragment of FK-506 by intramolecular ene reaction. Tetrahedron Lett 31: 3007–3010

    CAS  Google Scholar 

  312. Eis MJ, Wrobel JE, Ganem B (1984) Mechanism and synthetic utility of boron trifluoride etherate promoated organolithium additions. J Am Chem Soc 106: 3693–3694

    CAS  Google Scholar 

  313. Yamaguchi M, Hirao I (1983) An efficient method for the alkynylation of oxiranes using alkynyl boranes. Tetrahedron Lett 24: 391–394

    CAS  Google Scholar 

  314. Najera C, Yus M (1999) Desulfonylation reactions: recent developments. Tetrahedron 55: 10547–10658

    CAS  Google Scholar 

  315. Balboni G, Marastoni M, Merighi S, Borea PA, Tomatis R (2000) Synthesis and activity of 3-pyridylamine ligands at central nicotinic receptors. Eur J Med Chem 35: 979–988

    PubMed  CAS  Google Scholar 

  316. Fisher MJ, Myers CD, Joglar J, Chen SH, Danishefsky SJ (1991) Synthetic studies toward rapamycin: a solution to a problem in chirality merger through use of the Ireland reaction. J Org Chem 56: 5826–5834

    CAS  Google Scholar 

  317. Chen SH, Horvath RF, Joglar J, Fisher MJ, Danishefsky SJ (1991) Application of the Ibuka-Yamamoto reaction to a problem in stereochemical communication: a strategy for the stereospecific synthesis and stabilization of the triene substructure of rapamycin through sulfone substitution. J Org Chem 56: 5834–5845

    CAS  Google Scholar 

  318. Hayward CM, Fisher MJ, Yohannes D, Danishefsky SJ (1993) An application of the Suárez reaction to the regiospecific and stereospecific synthesis of the C28–C42 segment of rapamycin. Tetrahedron Lett 34: 3989–3992

    CAS  Google Scholar 

  319. Horvath RF, Linde II RG, Hayward CM, Joglar J, Yohannes D, Danishefsky SJ (1993) An application of the Evans-Prasad 1,3-syn diol synthesis to a stereospecific synthesis of the C10–C27 segment of rapamycin. Tetrahedron Lett 34: 3993–3996

    CAS  Google Scholar 

  320. Yohannes D, Danishefsky SJ (1992) Degradation of rapamycin: retrieval of major intact subunits. Tetrahedron Lett 33: 7469–7472

    CAS  Google Scholar 

  321. Yohannes D, Myers CD, Danishefsky SJ (1993) Degradation of rapamycin: synthesis of a rapamycin derived fragment containing the tricarbonyl and triene sectors. Tetrahedron Lett 34: 2075–2078

    CAS  Google Scholar 

  322. Meng D, Bertinato P, Balog A, Su DS, Kamenecka T, Sorensen EJ, Danishefsky SJ (1997) Total syntheses of epothilones A and B. J Am Chem Soc 119: 10073–10092

    CAS  Google Scholar 

  323. Nicolaou KC, Montagnon T, Vassilikogiannakis G, Mathison CJN (2005) The total synthesis of coleophomones B, C, and D. J Am Chem Soc 127: 8872–8888

    PubMed  CAS  Google Scholar 

  324. Julia M, Paris JM (1973) Syntheses with the help of sulfones. V. General method of synthesis of double bonds. Tetrahedron Lett 14: 4833–4836

    Google Scholar 

  325. Julia M (1985) Recent advances in double bond formation. Pure Appl Chem 57: 736–768

    Google Scholar 

  326. Dumeunier R, Marko IE (2004) The Julia reaction. In: T Takeda (ed): Modern Carbonyl Olefination. Wiley-VCH, 104–150

    Google Scholar 

  327. Grinfeld AA, Caufield CE, Schiksuis RA, Mattes JF, Chan KW (1994) Acid catalyzed functionalization of rapamycin. Tetrahedron Lett 35: 6835–6838

    CAS  Google Scholar 

  328. Steffan RJ, Kearney RM, Hu DC, Failli AA, Skotnicki JS, Schiksnis RA, Mattes JF, Chan KW, Caufield CE (1993) Base catalzyed degradations of rapamycin. Tetrahedron Lett 34: 3699–3702

    CAS  Google Scholar 

  329. Sedrani R, Jones LH, Jutzi-Eme AM, Schuler W, Cottens S (1999) Cleavage of the cyclohexyl-subunit of rapamycin results in loss of immunosuppressive activity. Bioorg Med Chem Lett 9: 459–462

    PubMed  CAS  Google Scholar 

  330. Goulet MT, Boger J (1990) Degradative studies on the tricarbonyl containing macrolide rapamycin. Tetrahedron Lett 31: 4845–4848

    CAS  Google Scholar 

  331. Sedrani R, Thai B, France J, Cottens S (1998) Dihydroxylation of the triene subunit of rapamycin. J Org Chem 63: 10069–10073

    CAS  Google Scholar 

  332. Luengo JI, Rozamus LW, Holt DA (1993) Efficient removal of pipecolinate from rapamycin and FK506 by reaction with n-Bu4N+CN. Tetrahedron Lett 34: 4599–4602

    CAS  Google Scholar 

  333. Leungo JI, Konialian-Beck A, Holt DA (1995) Ionization of the C7 methoxy group in rapamycin by 5 M lithium perchlorate-diethyl ether. Tetrahedron Lett 36: 7823–7824

    Google Scholar 

  334. Nelson FC, Stachel SJ, Eng CP, Sehgal SN (1999) Manipulation of the C(22)-C(27) region of rapamycin: stability issues and biological implications. Bioorg Med Chem Lett 9: 295–300

    PubMed  CAS  Google Scholar 

  335. Nelson FC, Stachel SJ, Mattes JF (1994) A novel ring contraction of rapamycin. Tetrahedron Lett 35: 7557–7560

    CAS  Google Scholar 

  336. Luengo JI, Konialian AL, Holt DA (1993) Studies on the chemistry of rapamycin: novel transformations under Lewis-acid catalysis. Tetrahedron Lett 34: 991–994

    CAS  Google Scholar 

  337. Stotnicki JS, Kearney RM (1994) Ring expanded rapamycin derivatives. Tetrahedron Lett 35: 201–202

    Google Scholar 

  338. Yang W, Digits CA, Hatada M, Narula S, Rozamus LW, Huestis CM, Wong J, Dalgarno D, Holt DA (1999) Selective epimerization of rapamycin via a retroaldol/aldol mechanism mediated by titanium tetraisopropoxide. Org Lett 1: 2033–2035

    PubMed  CAS  Google Scholar 

  339. Luengo JI, Rozamus LW, Holt DA (1994) Studies on selective reductions of rapamycin. Tetrahedron Lett 35: 6469–6472

    CAS  Google Scholar 

  340. Fisher MJ, Chow K, Villalobos A, Danishefsky SJ (1991) On the remarkable propensity for carbon-carbon bond cleavage reactions in the C8-C10 region of FK-506. J Org Chem 56: 2900–2907

    CAS  Google Scholar 

  341. Flaherty B, Overend WG, Williams NR (1966) Branched-chain sugars VII. Synthesis of D-mycarose and D-cladinose. J Chem Soc 4: 398–403

    Google Scholar 

  342. Ferrier RJ (1979) Unsaturated carbohydrates. Part 21. A carbocyclic ring closure of a hex-5-enopyranoside derivative. J Chem Soc Perkin Trans I 6: 974–977

    Google Scholar 

  343. Ferrier RJ (2001) Direct conversion of 5,6-unsaturated hexopyranosyl compounds to functionalized cyclohexanones. Top Curr Chem 215: 277–291

    CAS  Google Scholar 

  344. Meyers AI, Babiak KA, Campbell AL, Comins DL, Fleming MP, Henning R, Heuschmann M, Hudspeth JP, Kane JM, Reider PJ et al (1983) Total synthesis of (-)-maysine. J Am Chem Soc 105: 5015–5024

    CAS  Google Scholar 

  345. Paterson I, Yeung KP, Watson C, Ward RA, Wallace PA (1998) The total synthesis of scytophycin C. Part 1: Stereocontrolled synthesis of the C1-C32 protected seco acid. Tetrahedron 54: 11935–11954

    CAS  Google Scholar 

  346. Fürstner A, Kattnig E, Lepage O (2006) Total syntheses of amphidinolide X and Y. J Am Chem Soc 128: 9194–9204

    PubMed  Google Scholar 

  347. Reetz MT, Jung A (1983) 1,3-Asymmetric induction in addition reactions of chiral β-alkoxy aldehydes: efficient chelation control via Lewis acidic titanium reagents. J Am Chem Soc 105: 4833–4835

    CAS  Google Scholar 

  348. Reetz MT (1984) New synthetic methods. (44). Chelate-or nonchelate control in addition reactions of chiral α-and β-alkoxycarbonyl compounds. Angew Chem Int Ed 23: 556

    Google Scholar 

  349. Kiyooka S, Heathcock CH (1983) Acyclic Stereoselection. 20. High diastereofacial selectivity in the stannic chloride mediated reactions of allylsilanes with chiral α-and β-alkoxy aldehydes. Tetrahedron Lett 24: 4765–476

    CAS  Google Scholar 

  350. Roush WR, Ando K, Powers DB, Palkowitz AD, Halterman RL (1990) Asymmetric synthesis using diisopropyl tartrate modified (E)-and (Z)-crotylboronates: preparation of the chiral crotylboronates and reactions with achiral aldehydes. J Am Chem Soc 112: 6339–6348

    CAS  Google Scholar 

  351. Roush WR, Ando K, Powers DB, Halterman RL, Palkowitz AD (1988) Enantioselective synthesis using diisopropyl tartrate-modified (E)-and (Z)-crotylboronates: reactions with achiral aldehydes. Tetrahedron Lett 29: 5579–5582

    CAS  Google Scholar 

  352. Roush WR, Halterman RL (1986) Diispropyl tartrate modified (E)-crotylboronates: highly enantioselective propionate (E)-enolate equivalents. J Am Chem Soc 108: 294–296

    CAS  Google Scholar 

  353. Barton DHR, Dowlatshahi HA, Motherwell WB, Villemin D (1980) A new radical decar-boxylation reaction for the conversion of carboxylic acids into hydrocarbons. J Chem Soc Chem Commun 15: 732–733

    Google Scholar 

  354. Barton DHR, Crich D, Motherwell WB (1983) A practical alternative to the Hunsdiecker reaction. Tetrahedron Lett 24: 4979–4982

    CAS  Google Scholar 

  355. Okada K, Okamoto K, Oda M (1988) A new and practical method of decarboxylation: photosensitized decarboxylation of N-acyloxyphthalimides via electron-transfer mechanism. J Am Chem Soc 110: 8736–8738

    CAS  Google Scholar 

  356. Hart DJ, Hong WP, Hsu LY (1987) Total synthesis of (±)-lythrancepine II and (±)-lythrancepine III. J Org Chem 52: 4665–467

    CAS  Google Scholar 

  357. Nelson DJ, Henley RL, Yao Z, Smith TD (1993) Diimide reduction of representative alkenes and correlation of their relative reaction rates with corresponding ionization potentials. Tetrahedron Lett 34: 5835–5838

    CAS  Google Scholar 

  358. Freire R, Marrero JJ, Rodriguez MS, Suárez E (1986) Synthesis of medium-sized lactones: iodosobenzene diacetate an efficient reagent for β-fragmentation of alkoxy-radicals. Tetrahedron Lett 27: 383–386

    CAS  Google Scholar 

  359. Danishefsky SJ, Pearson WH, Harvey DF (1984) Diastereofacial control in the Lewis acid catalyzed cyclocondensation reaction of aldehydes with activated dienes: a synthesis of the Mus musculus pheromone. J Am Chem Soc 106: 2455–2456

    CAS  Google Scholar 

  360. Danishefsky SJ, Pearson WH, Harvey DF (1984) On the relationship of topological and diastereofacial control in the Lewis acid catalyzed cyclocondensation reaction of alkoxyaldehydes with activated dienes: metal tunable asymmetric induction. J Am Chem Soc 106: 2456–2458

    CAS  Google Scholar 

  361. Takai K, Heathcock CH (1985) Acyclic stereoselection. 32. Synthesis and characterization of the diastereomeric (4S)-pentane-1,2,3,4-tetrols. J Org Chem 50: 3247–3251

    CAS  Google Scholar 

  362. Danishefsky S, Yan CF, Singh RK, Gammill RB, McCurry PM Jr, Fritsch N, Clardy J (1979) Derivatives of 1-methoxy-3-trimethylsilyloxy-1,3-butadiene for Diels-Alder reactions. J Am Chem Soc 101: 7001–7008

    CAS  Google Scholar 

  363. Myles DC, Bigham MH (1992) (E,Z)-1-Methoxy-2-methyl-3-(trimethylsiloxy)-1,3-pentadiene. Org Syn 70: 231–236

    CAS  Google Scholar 

  364. Ferrier RJ, Prasad N (1969) Unsaturated carbohydrates. IX. Synthesis of 2,3-dideoxy-α-D-erythro-hex-2-enopyranosides from tri-O-acetyl-D-glucal. J Chem Soc C 4: 570–575

    Google Scholar 

  365. Ferrier RJ (2001) Substitution-with-allylic-rearrangement reactions of glycal derivatives. Top Curr Chem 215: 153–175

    CAS  Google Scholar 

  366. Le Noble WJ (1961) The configurations of some substituted β-haloacrylic acids. J Am Chem Soc 83: 3897–3899

    Google Scholar 

  367. Abarbri M, Thibonnet J, Parrain JL, Duchêne (2002) Palladium-catalyzed cross-coupling of iodovinylic acids with organometallic reagents. Selective synthesis of 3,3-disubstituted prop-2-enoic acids. Synthesis 4: 543–551

    Google Scholar 

  368. Still WC, Gennari C (1983) Direct synthesis of Z-unsaturated esters. A useful modification of the Horner-Emmons Olefination. Tetrahedron Lett 24: 4405–4408

    CAS  Google Scholar 

  369. Ibuka T, Tanaka M, Yamamoto Y (1989) Very high chemoselective, regioselective, and Estereoselective 1,3-chirality transfer involving reaction of acyclic (E)-and (Z)-γ-mesyloxy α,β-enoates and organocyanocopper-trifluoroborane reagents. Efficient synthetic routes to functionalized chiral α-alkyl (E)-β,γ-enoates and (E)-allylic alcohols with high optical purity. J Am Chem Soc 111: 4864–487

    CAS  Google Scholar 

  370. Linde RG II, Jeroncic LO, Danishefsky SJ (1991) Straightfoward synthesis of 1,2,3-tricarbonyl systems. J Org Chem 56: 2534–2538

    CAS  Google Scholar 

  371. Smith AB, Condon SM, McCauley JA (1998) Total synthesis of immunosuppressants: Unified strategies exploiting dithiane couplings and σ-bond olefin constructions. Acc Chem Res 31: 35–46

    CAS  Google Scholar 

  372. Smith AB, Adams CM (2004) Evolution of dithiane-based strategies for the construction of architecturally complex natural products. Acc Chem Res 37: 365–377

    PubMed  CAS  Google Scholar 

  373. Sehgal SN, Baker H, Eng CP, Singh K, Vezina C (1983) Demethoxyrapamycin (AY-24,668), a new antifungal antibiotic. J Antibiot 36: 351–354

    PubMed  CAS  Google Scholar 

  374. Findlay JA, Liu JS, Burnell DJ, Nakashima TT (1982) The structure of demethoxyrapamycin. Can J Chem 60: 2046–2047

    CAS  Google Scholar 

  375. Nicolaou KC, Nadin A, Leresche JE, Yue EW, La Greca S (1994) Total synthesis of zaragozic acid A/squalestatin S1. Angew Chem Int Ed 33: 2190–2191

    Google Scholar 

  376. Egbertson M, Danishefsky SJ (1989) A synthetic route to the tricarbonyl region of FK-506. J Org Chem 54: 11–12

    CAS  Google Scholar 

  377. Toone EJ, Jones JB (1987) Enzymes in organic synthesis. 40. Evaluation of the enantioselectivity of the pig liver esterase-catalyzed hydrolyses of racemic piperidine carboxylic acid esters. Can J Chem 65: 2722–2726

    Google Scholar 

  378. Oppolzer W, Chapuis C, Bernardinelli G (1984) Camphor-derived N-acryloyl and Ncrotonoyl sultams: practical activated dienophiles in asymmetric Diels-Alder reactions. Helv Chim Acta 67: 1397–1401

    CAS  Google Scholar 

  379. Marshall JA, Xie S (1995) Synthesis of C22-C34 subunit of immunosuppressant FK-506. J Org Chem 60: 7230–7237

    CAS  Google Scholar 

  380. Tanyeli C, Turkut E (2004) Enzyme catalyzed reverse enantiomeric separation of methyl (±)-cyclohexene-1-carboxylate. Tetrahedron Asymm 15: 2057–2060

    CAS  Google Scholar 

  381. Pasto DJ, Hickman J (1968) Transfer reactions involving boron. XVI. The hydroboration of 3-and 4-heterosubstituted cyclohexenes. J Am Chem Soc 90: 4445–4449

    CAS  Google Scholar 

  382. Smith only explicitly reports the synthesis of the C40 TBS ether, the yield for the corresponding TIPS ether is assumed to be similar.

    Google Scholar 

  383. Gao Y, Klunder JM, Hanson RM, Masamune H, Ko SY, Sharpless KB (1987) Catalytic asymmetric epoxidation and kinetic resolution: modified procedures including in situ derivatization. J Am Chem Soc 109: 5765–5780

    CAS  Google Scholar 

  384. Shekhani MS, Khan KM, Mahmmod K, Shah PM, Malik S (1990) Selective cleavage of tert-butyldiphenylsilyl ethers in the presence of tert-butyldimethylsilyl ethers. Tetrahedron Lett 31: 1669–1670

    CAS  Google Scholar 

  385. Nelson TD, Crouch RD (1996) Selective deprotection of silyl ethers. Synthesis 9: 1031–1069

    Google Scholar 

  386. Crouch RD (2004) Selective monodeprotection of bis-silyl ethers. Tetrahedron 60: 5833–5871

    CAS  Google Scholar 

  387. Iversen T, Bundle DR (1981) Benzyl trichloroacetimidate, a versatile reagent for acidcatalyzed benzylation of hydroxy-groups. J Chem Soc Chem Commun 1240–1241

    Google Scholar 

  388. Palomo C, Oiarbide M, Garcia JM (2002) The aldol addition reaction: an old transformation at constant rebirth. Chem-Eur J 8: 36–44

    CAS  Google Scholar 

  389. Layton ME, Morales CA, Shair MD (2002) Biomimetic synthesis of (−)-longithorone A. J Am Chem Soc 124: 773–775

    PubMed  CAS  Google Scholar 

  390. Muir JC, Pattenden G, Ye T (2002) Total synthesis of (+)-curacin A, a novel antimitotic metabolite from a cyanobacterium. J Chem Soc Perkin Trans 120: 2243–2250

    Google Scholar 

  391. Paterson I, Findlay AD, Florence GJ (2006) Total synthesis and stereochemical reassignment of (+)-dolastatin 19. Org Lett 8: 2131–2134

    PubMed  CAS  Google Scholar 

  392. Lucas BS, Gopalsamuthiram V, Burke SD (2007) Total synthesis of phorboxazole B. Angew Chem Int Ed 46: 769–772

    CAS  Google Scholar 

  393. The conditions employed with great success in Smith’s FK-506 formal total synthesis (LDA, 10% HMPA/THF) generated exclusively the undesired enolate regioisomer. See reference 100.

    Google Scholar 

  394. McMurry JE, Scott WJ (1983) A method for the regiospecific synthesis of enol triflates by enolate trapping. Tetrahedron Lett 24: 979–982

    CAS  Google Scholar 

  395. Smith AB, Condon SM, McCauley JA, Leahy JW, Leazer JL Jr, Maleczka RE Jr (1994) Rapamycin synthetic studies. 1. Construction of the C(27)–C(42) subunit. Tetrahedron Lett 35: 4907–4910

    CAS  Google Scholar 

  396. Mohr P, Waespe-Sarcevic N, Tamm C, Gawronska K, Gawronski JK (1983) A study of stereoselective hydrolysis of symmetrical diesters with pig liver esterase. Helv Chim Acta 66: 2501–2511

    CAS  Google Scholar 

  397. Lautens M, Colucci JT, Hiebert S, Smith ND, Bouchain G (2002) Total synthesis of ionomycin using ring-opening strategies. Org Lett 4: 1879–1882

    PubMed  CAS  Google Scholar 

  398. Prusov E, Rohm H, Maier ME (2006) Chemoenzymatic synthesis of the C10–C23 segment of dictyostatin. Org Lett 8: 1025–1028

    PubMed  CAS  Google Scholar 

  399. In general, Smith has succulently summarized the advantages of dithiane methodology relative to classical aldol chemistry. Namely: 1) the product carbonyl is masked, circumventing a separate protection step; 2) the aldol hydroxyl can be either protected or unprotected, via a suitable choice of electrophile; 3) the configuration of the β-hydroxyl is defined prior to the coupling step; 4) the reaction is not reversible; and 5) carbonyl self-condensation is avoided. See reference 372.

    Google Scholar 

  400. Kinoshita M, Taniguchi M, Morioka M, Takami H, Mizusawa Y (1988) Synthetic studies of amphotericin B. III. An enantiospecific synthesis of the C(1)–C(19) segment of the amphotericin B aglycon. Bull Chem Soc Jpn 61: 2147–2156

    CAS  Google Scholar 

  401. Reich HJ, Borst JP, Dykstra RR (1994) Solution ion pair structure of 2-lithio-1,3-dithianes in THF and THF-HMPA. Tetrahedron 50: 5869–5880

    CAS  Google Scholar 

  402. Nickon A, Rodriguez AD, Shirhatti V, Ganguly R (1985) Bicyclic vinyl sulfides by ring expansions of spirocyclic dithioketal systems. J Org Chem 50: 4218–4226

    CAS  Google Scholar 

  403. Tsai YM, Cherng CD (1991) Intramolecular free radical cyclizations using acylsilanes as radicalphiles. Tetrahedron Lett 32: 3515–3518

    CAS  Google Scholar 

  404. Davey AE, Parsons AF, Taylor RJK (1989) Reactions of dithiane derived alcohols: promotion of the Thorpe-Ingold effect by trimethylsilyl and tert-butyl substituents. J Chem Soc Perkin Trans I 10: 1853–1858

    Google Scholar 

  405. Keese R, Meyer M (1993) The structural basis of the geminal-dimethyl effect. Tetrahedron 49: 2055–2064

    CAS  Google Scholar 

  406. Chérest M, Felkin H, Prudent N (1968) Torsional strain involving partial bonds. The stereochemistry of the lithium aluminium hydride reduction of some simple openchain ketones. Tetrahedron Lett 18: 2199–2204

    Google Scholar 

  407. Anh NT, Eisenstein O (1977) Theoretical interpretation of 1,3-asymmetric induction. The importance of antiperiplanarity. Nouv J Chim 1: 61–70

    Google Scholar 

  408. Anh NT (1980) Regio-and stereoselectivities in nucleophilic reactions. Top Curr Chem 88: 145–162

    Google Scholar 

  409. David S, Estramareix B, Fischer J-C, Thérisod M (1982) The biosynthesis of thiamine. Syntheses of [1,1,1,5-2H4]-1-deoxy-D-threo-2-pentulose and incorporation of this sugar in biosynthesis of thiazole by Escherichia coli cells. J Chem Soc Perkin Trans I 9: 2131–2137

    Google Scholar 

  410. Stork G, Zhao K (1989) A simple method of dethioacetalization. Tetrahedron Lett 30: 287–290

    CAS  Google Scholar 

  411. Zibuck R, Liverton NJ, Smith AB (1986) Total synthesis of (+)-latrunculin B. J Am Chem Soc 108: 2451–2453

    CAS  Google Scholar 

  412. Smith AB, Leahy JW, Noda I, Remiszewski SW, Liverton NJ, Zibuck R (1992) Total synthesis of the latrunculins. J Am Chem Soc 114: 2995–3007

    CAS  Google Scholar 

  413. Holmes AB, Jones GE (1980) Synthesis of 4-alkyl-1-trimethylsilylbuta-1,3-diynes. Tetrahedron Lett 21: 3111–3112

    CAS  Google Scholar 

  414. Piers E, Chong JM, Morton HE (1981) Reaction of (trimethylstannyl)copper reagents with α,β-acetylenic esters. Tetrahedron Lett 22: 4905–4908

    CAS  Google Scholar 

  415. Singer RD, Hutzinger MW, Oehlschlager AC (1991) Additions of copper cyanide (CuCN)-derived stannylcuprates to terminal alkynes: a comparative spectroscopic and chemical study. J Org Chem 56: 4933–4938

    CAS  Google Scholar 

  416. Korth H-G, Trill H, Sustmann R (1981) [1-2H]Allyl radical: barrier to rotation and allyl delocalization energy. J Am Chem Soc 103: 4483–4489

    CAS  Google Scholar 

  417. Crisp GT, Glink PT (1994) Elaboration of the side chain of α-amino acids containing a vinyl iodide by palladium-catalysed coupling. Tetrahedron 50: 2623–2640

    CAS  Google Scholar 

  418. Crisp GT, Glink PT (1994) Elaboration of the side of α-amino acids by palladium-catalysed Stille couplings. Tetrahedron 50: 3213–3234

    CAS  Google Scholar 

  419. Boden EP, Keck GE (1985) Proton-transfer steps in Steglich esterification: a very practical new method for macrolactonization. J Org Chem 50: 2394–2395

    CAS  Google Scholar 

  420. Hettrick CM, Scott WJ (1991) Palladium-catalyzed oxyhexatriene cyclization: a novel approach to cyclohexenone annulation. J Am Chem Soc 113: 4903–4910

    CAS  Google Scholar 

  421. Farina V, Baker SR, Benigni D, Sapino C Jr (1988) Palladium-catalyzed coupling between cephalosporin derivatives and unsaturated stannanes: a new ligand for palladium chemistry. Tetrahedron Lett 29: 5739–5742

    CAS  Google Scholar 

  422. Beletskaya IP (1983) The cross-coupling reactions of organic halides with organic derivatives of tin, mercury and copper catalyzed by palladium. J Organomet Chem 250: 551–564

    CAS  Google Scholar 

  423. Milstein D, Stille JK (1979) Palladium-catalyzed coupling of tetraorganotin compounds with aryl and benzyl halides. Synthetic utility and mechanism. J Am Chem Soc 101: 4992–4998

    CAS  Google Scholar 

  424. Casado AL, Espinet P (1998) Mechanism of the Stille reaction. 1. The transmetalation step. Coupling of R1I and R2SnBu3 catalyzed by trans-[PdR1IL2] (R1 = C6Cl2F3; R2 = Vinyl, 4-Methoxyphenyl; L = AsPh3). J Am Chem Soc 120: 8978–8985

    CAS  Google Scholar 

  425. Lister SG (1983) PhD Thesis, Imperial College of Science, Technology and Medicine. Unpublished results

    Google Scholar 

  426. Mukherjee S (1988) PhD Thesis, Imperial College of Science, Technology and Medicine. Unpublished results

    Google Scholar 

  427. Ley SV, Norman J, Pinel C (1994) Studies towards the total synthesis of rapamycin: preparation of the C10–C17 carbon unit. Tetrahedron Lett 35: 2095–2098

    CAS  Google Scholar 

  428. Ley SV, Cox LR, Meek G (1996) (π-Allyl)tricarbonyliron lactone complexes in organic synthesis: a useful and conceptually unusual route to lactones and lactams. Chem Rev 96: 423–442

    PubMed  CAS  Google Scholar 

  429. Voorhess V, Adams R (1922) The use of oxides of platinum for the catalytic reduction of organic compounds. J Am Chem Soc 44: 1397–1405

    Google Scholar 

  430. Purdie T, Irvine JC (1903) Alkylation of sugars. J Chem Soc Trans 83: 1021–1037

    Google Scholar 

  431. Zhang HX, Guibe F, Balavoine G (1990) Palladium-and molybdenum-catalyzed hydrostannation of alkynes. A novel access to regio-and stereodefined vinylstannanes. J Org Chem 55: 1857–1867

    CAS  Google Scholar 

  432. Evans DA, Black WC (1993) Total synthesis of (+)-A83543A [(+)-lepicidin A]. J Am Chem Soc 115: 4497–4513

    CAS  Google Scholar 

  433. Ley SV, Kouklovsky C (1994) Towards the synthesis of the C37–C42 fragment of rapamycin: intramolecular reactions of allyl silanes with oxonium ions generated from α-alkoxy sulfones. Tetrahedron 50: 835–848

    CAS  Google Scholar 

  434. Kouklovsky C, Ley SV, Marsden SP (1994) Studies towards the total synthesis of rapamycin: preparation of the cyclohexyl C33–C42 fragment and further coupling to afford the C22–C42 carbon unit. Tetrahedron Lett 35: 2091–2094

    CAS  Google Scholar 

  435. Johnson WS, Werthemann L, Bartlett WR, Brocksom TJ, Li T-T, Faulkner DJ, Petersen MR (1970) Simple stereoselective version of the Claisen rearrangement leading to transtrisubstituted olefinic bonds. Synthesis of squalene. J Am Chem Soc 92: 741–743

    CAS  Google Scholar 

  436. Cremer D, Gauss J, Childs RF, Blackburn C (1985) Stereomutation of methoxycarbenium ions. 1. An investigation of the mechanism in gaseous and solution phases. J Am Chem Soc 107: 2435–2441

    CAS  Google Scholar 

  437. Blackburn C, Childs RF, Cremer D, Gauss J (1985) Stereomutation of methoxycarbenium ions. 2. Experimental evidence for an inversion process. J Am Chem Soc 107: 2442–2448

    CAS  Google Scholar 

  438. Epoxidation of homoallylic alcohols notoriously occurs with substantially diminished selectivity. See reference 132, and 133.

    Google Scholar 

  439. Robins MJ, Wilson JS (1981) Smooth and efficient deoxygenation of secondary alcohols. A general procedure for the conversion of ribonucleosides to 2’-deoxynucleosides. J Am Chem Soc 103: 932–933

    CAS  Google Scholar 

  440. Anderson JC, Ley SV, Marsden SP (1994) Studies towards the total synthesis of rapamycin: a convergent and stereoselective synthesis of the C22–C32 carbon framework. Tetrahedron Lett 35: 2087–2090

    CAS  Google Scholar 

  441. Ghosh AK, Xu X (2004) Assignment of absolute stereochemistry and total synthesis of (—)-spongidepsin. Org Lett 6: 2055–2058

    PubMed  CAS  Google Scholar 

  442. Doherty AM, Ley SV, Lygo B, Williams DJ (1984) Synthesis of spiroacetals using organoselenium-mediated cyclization reactions. X-ray molecular structure of (2S,8R)-8-methyl-2-phenyl-1,7-dioxaspiro[5.5]undecan-4(R)-ol. J Chem Soc Perkin Trans 16: 1371–1377

    Google Scholar 

  443. Ley SV, Lygo B (1982) Synthesis of methyl-1,6-dioxaspiro[4,5]decanes using organoselenium-mediated cyclization reactions. Tetrahedron Lett 23: 4625–4628

    CAS  Google Scholar 

  444. Murata Y, Inomata K, Kinoshita H, Kotake H (1983) A convenient method for the synthesis of acyclic ketones. Synthesis of sex pheromone of Douglas fir tussock moth. Bull Chem Soc Jpn 56: 2539–2540

    CAS  Google Scholar 

  445. Mootoo DR, Date V, Fraser-Reid B (1988) n-Pentenyl glycosides permit the chemospecific liberation of the anomeric center. J Am Chem Soc 110: 2662–2663

    CAS  Google Scholar 

  446. Fraser-Reid B, Udodong UE, Wu Z, Ottosson H, Merritt JR, Rao CS, Roberts C, Madsen R (1992) n-Pentenyl glycosides in organic chemistry: a contemporary example of serendipity. Synlett 12: 927–942

    Google Scholar 

  447. Qing F-L, Zhang X (2001) A one-pot synthesis of (E)-α-bromo-α,β-unsaturated esters and their trifluoromethylation: a general and stereoselective route to (E)-α-trifluoromethyl-α,β-unsaturated esters. Tetrahedron Lett 42: 5929–5931

    CAS  Google Scholar 

  448. Tago K, Kogen H (2000) Bis(2,2,2-trifluoroethyl) bromophosphonoacetate, a novel HWE reagent for the preparation of (E)-α-bromoacrylates: a general and stereoselective method for the synthesis of trisubstituted alkenes. Org Lett 2: 1975–1978

    PubMed  CAS  Google Scholar 

  449. Olpp T, Brueckner R (2004) Stereoselective preparation of (E)-α-bromo acrylates from mixtures of brominated Ando phosphonates. Synthesis 13: 2135–2152

    Google Scholar 

  450. Brown HC, Jadhav PK, Bhat KS (1988) Chiral synthesis via organoboranes. 13. A highly diastereoselective and enantioselective addition of [(Z)-γ-alkoxyallyl]diisopinocamphe ylboranes to aldehydes. J Am Chem Soc 110: 1535–1538

    CAS  Google Scholar 

  451. Paterson I, Chen DY-K, Coster MJ, Acena JL, Bach J, Gibson KR, Keown LE, Oballa RM, Trieselmann T, Wallace DJ et al (2001) Stereocontrolled total synthesis of (+)-altohyrtin A/spongistatin 1. Angew Chem Int Ed 40: 4055–4060

    CAS  Google Scholar 

  452. Howell SC, Ley SV, Mahon M, Worthington PA (1981) Synthesis of cinnamolide and polygodial. J Chem Soc Chem Commun 11: 507–508

    Google Scholar 

  453. Hollinshead DM, Howell SC, Ley SV, Mahon M, Ratcliffe NM, Worthington PA (1983) The Diels-Alder route to drimane related sesquiterpenes. Synthesis of cinnamolide, polygodial, isodrimeninol, drimenin, and warburganal. J Chem Soc Perkin Trans 17: 1579–1589

    Google Scholar 

  454. Chenevert R, Courchesne G, Caron D (2003) Chemoenzymatic enantioselective synthesis of the polypropionate acid moiety of dolabriferol. Tetrahedron Asymm 14: 2567–2571

    CAS  Google Scholar 

  455. Venkatraman S, George NF, Girijavallabhan V (2002) Application of ruthenium induced cyclization for construction of strained biaryl ether macrocyclic compounds. Tetrahedron 58: 5453–5458

    CAS  Google Scholar 

  456. Masuno MN, Pessah IN, Olmstead MM, Molinski TF (2006) Simplified cyclic analogues of bastadin-5. Structure-activity relationships for modulation of the RyR1/FKBP12 Ca2+ channel complex. J Med Chem 49: 4497–4511

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel (Switzerland)

About this chapter

Cite this chapter

Maddess, M.L., Tackett, M.N., Ley, S.V. (2008). Total synthesis studies on macrocyclic pipecolic acid natural products: FK506, the antascomicins and rapamycin. In: Petersen, F., Amstutz, R. (eds) Natural Compounds as Drugs. Progress in Drug Research, vol 66. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8595-8_2

Download citation

Publish with us

Policies and ethics