Skip to main content

Mathematical Modelling and Simulation of Coronary Blood Flow

  • Chapter
Aspects of Mathematical Modelling

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

As in vivo observations and measurements of flow conditions in the coronary circulation are extremely difficult and clinically almost infeasible, the use of mathematical models and the performance of simulation studies are the only practical way for a good understanding of coronary haemodynamics. As the range of clinical applicability of known models in this field is rather limited, we developed a detailed lumped parameter model of the coronary haemodynamics. From the beginning we aimed at its use as an aid for interventional cardiologists and heart surgeons. At this stage of development, our lumped parameter model can already be of some help to physicians, when appraising the adverse effects of stenoses on myocardial blood supply and assessing the attainable improvement of the supply by therapy. The crude approximations inherent in lumped parameter modelling restrict the applicability of this unsophisticated approach to an imprecise global assessment of the blood supply to the myocardium and its detoriation in the case of coronary artery disease. However, to be able to assess other specific pathophysiological processes, such as thrombus development and stenoses growth, for instance, we need precise knowledge of the local three-dimensional flow pattern in a stenosed section of the coronary artery tree, especially around the apex of the stenosis. We present simulation studies of the three-dimensional flow in stenosed sections of the coronary arteries, based on a distributed parameter modelling approach. In these studies, the governing partial differential equations are solved with the finite element method. Particular attention is given to the acquisition of patient-specific data, especially of data describing the geometry of the patient’s epicardial arteries, derived from medical images. These data are required not only for the patient-specific adaptation of our lumped parameter model but also, in the case of our three-dimensional flow simulations, for the generation of a finite element mesh in the flow domain under investigation. However, we deal with the mesh generation issues only very briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. L. Gould. Coronary artery stenosis and reversing atherosclerosis. Arnold, London etc., second edition, 1999.

    Google Scholar 

  2. J. Strackee and N. Westerhof. The Physics of heart and circulation. Medical science series. Institute of Physics Pub., Bristol; Philadelphia, PA, 1993.

    Google Scholar 

  3. D. P. Zipes and E. Braunwald. Braunwald’s heart disease a textbook of cardiovascular medicine. W.B. Saunders, Philadelphia, Pa., 7th ed edition, 2005.

    Google Scholar 

  4. Y. Huo and G. S. Kassab. Pulsatile blood flow in the entire coronary arterial tree: theory and experiment. Am J Physiol Heart Circ Physiol, 291(3):H1074–87, 2006.

    Article  Google Scholar 

  5. B. Quatember and F. Veit. Simulation model of the coronary artery flow dynamics and its applicability in the area of coronary surgery. In F. Breitenecker and I. Husinsky, editors, Proceedings of 1995 EUROSIM Simulation Congress. Vienna, Austria. 11 15 Sept. 1995. Elsevier, Amsterdam, Netherlands, 1995.

    Google Scholar 

  6. E. B. Shim, J. Y. Sah, and C. H. Youn. Mathematical modeling of cardiovascular system dynamics using a lumped parameter method. Jpn J Physiol, 54(6):545–53, 2004.

    Article  Google Scholar 

  7. M. Yoshigi, G. D. Knott, and B. B. Keller. Lumped parameter estimation for the embryonic chick vascular system: a time-domain approach using mlab. Comput Methods Programs Biomed, 63(1):29–41, 2000.

    Article  Google Scholar 

  8. M. Zamir. The physics of coronary blood flow. Springer, New York, 2005.

    MATH  Google Scholar 

  9. D. Manor, S. Sideman, U. Dinnar, and R. Beyar. Analysis of flow in coronary epicardial arterial tree and intramyocardial circulation. Med Biol Eng Comput, 32(4 Suppl):S133–43, 1994.

    Article  Google Scholar 

  10. R. T. Cole, C. L. Lucas, W. E. Cascio, and T. A. Johnson. A labview model incorporating an open-loop arterial impedance and a closed-loop circulatory system. Ann Biomed Eng, 33(11):1555–73, 2005.

    Article  Google Scholar 

  11. M. J. Conlon, D. L. Russell, and T. Mussivand. Development of a mathematical model of the human circulatory system. Ann Biomed Eng, 34(9): 1400–13, 2006.

    Article  Google Scholar 

  12. V. Diaz-Zuccarini and J. LeFevre. An energetically coherent lumped parameter model of the left ventricle specially developed for educational purposes. Comput Biol Med, 37(6): 774–84, 2007.

    Article  Google Scholar 

  13. G. Ferrari, C. De Lazzari, T. L. de Kroon, J. M. Elstrodt, G. Rakhorst, and Y. J. Gu. Numerical simulation of hemodynamic changes during beating-heart surgery: analysis of the effects of cardiac position alteration in an animal model. Artif Organs, 31(1):73–9, 2007.

    Article  Google Scholar 

  14. G. A. Giridharan, S. C. Koenig, M. Mitchell, M. Gartner, and G. M. Pantalos. A computer model of the pediatric circulatory system for testing pediatric assist devices. Asaio J, 53(1):74–81, 2007.

    Article  Google Scholar 

  15. E. Lanzarone, P. Liani, G. Baselli, and M. L. Costantino. Model of arterial tree and peripheral control for the study of physiological and assisted circulation. Med Eng Phys, 29(5):542–55, 2007.

    Article  Google Scholar 

  16. B. H. Maines and C. E. Brennen. Lumped parameter model for computing the minimum pressure during mechanical heart valve closure. J Biomech Eng, 127(4):648–55, 2005.

    Article  Google Scholar 

  17. K. Pekkan, D. Frakes, D. De Zelicourt, C. W. Lucas, W. J. Parks, and A. P. Yoganathan. Coupling pediatric ventricle assist devices to the fontan circulation: simulations with a lumped-parameter model. Asaio J, 51(5):618–28, 2005.

    Article  Google Scholar 

  18. V. Kecman. State-space models of lumped and distributed systems. Springer, Berlin etc., 1988.

    MATH  Google Scholar 

  19. J. A. Negroni, E. C. Lascano, and R. H. Pichel. A computer study of the relation between chamber mechanical properties and mean pressure-mean flow of the left ventricle. Circ Res, 62(6):1121–33, 1988.

    Google Scholar 

  20. P. H. Bovendeerd, P. Borsje, T. Arts, and F. N. van De Vosse. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study. Ann Biomed Eng, 34(12): 1833–45, 2006.

    Article  Google Scholar 

  21. Jos A. E. Spaan. Coronary blood flow: mechanics, distribution, and control. Developments in cardiovascular medicine; v. 124. Kluwer Academic Publishers, Dordrecht; Boston, 1991.

    Google Scholar 

  22. R. Beyar, D. Manor, and S. Sideman. Myocardial mechanics and coronary flow dynamics. In S. Sideman and R. Beyar, editors, Interactive Phenomena in the Cardiac System, volume 346 of Advances in Experimental Medicine and Biology, pages 125–136. Plenum Press, New York, 1993.

    Google Scholar 

  23. J. Dankelman. On the dynamics of the coronary circulation. Delft, 1989.

    Google Scholar 

  24. S. Sideman and R. Beyar. Interactive phenomena in the cardiac system. Advances in experimental medicine and biology; v. 346. Plenum Press, New York, 1993.

    Google Scholar 

  25. J. Jos A. E. Spaan A. Spaan. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res, 56(3):293–309, 1985.

    Google Scholar 

  26. J. A. Spaan, A. J. Cornelissen, C. Chan, J. Dankelman, and F. C. Yin. Dynamics of flow, resistance, and intramural vascular volume in canine coronary circulation. Am J Physiol Heart Circ Physiol, 278(2):H383–403, 2000.

    Google Scholar 

  27. B. Kaimovitz, Y. Lanir, and G. S. Kassab. Large-scale 3-d geometric reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data. Ann Biomed Eng, 33(11):1517–35, 2005.

    Article  Google Scholar 

  28. J. I. Hoffman and J. A. Spaan. Pressure-flow relations in coronary circulation. Physiol Rev, 70(2):331–90, 1990.

    Google Scholar 

  29. G. Fibich, N. L. Lanir, and M. Abovsky. Modeling of coronary capillary flow. In S. Sideman and R. Beyar, editors, Interactive Phenomena in the Cardiac System, volume 346 of Advances in Experimental Medicine and Biology, pages 137–150. Plenum Press, New York, 1993.

    Google Scholar 

  30. P. A. Wieringa. The Influence of the coronary capillary network on the distribution and control of local blood flow. Delft, 1985.

    Google Scholar 

  31. R. Beyar, R. Caminker, D. Manor, and S. Sideman. Coronary flow patterns in normal and ischemic hearts: transmyocardial and artery to vein distribution. Ann Biomed Eng, 21(4):435–58, 1993.

    Article  Google Scholar 

  32. M. S. Moayeri and G. R. Zendehbudi. Effects of elastic property of the wall on flow characteristics through arterial stenoses. J Biomech, 36(4):525–35, 2003.

    Article  Google Scholar 

  33. F. Kajiya, G. A. Klassen, J. A. Spaan, and J. I. E. Hoffmann. Coronary circulation basic mechanism and clinical relevance. Springer, Tokyo etc., 1990.

    Google Scholar 

  34. S. Y. Rabbany, J. Y. Kresh, and A. Noordergraaf. Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am J Physiol, 257(2 Pt 2):H357–64, 1989.

    Google Scholar 

  35. N.P. Smith. A computational study of the interaction between coronary blood flow and myocardial mechanics. Physiol Meas, 25(4):863–77, 2004.

    Article  Google Scholar 

  36. J. Z. Wang, B. Tie, W. Welkowitz, J. Kostis, and J. Semmlow. Incremental network analogue model of the coronary artery. Med Biol Eng Comput, 27(4):416–22, 1989.

    Article  Google Scholar 

  37. D. Zinemanas, R. Beyar, and S. Sideman. Effects of myocardial contraction on coronary blood flow: an integrated model. Ann Biomed Eng, 22(6):638–52, 1994.

    Article  Google Scholar 

  38. D. Zinemanas, R. Beyar, and S. Sideman. Relating mechanics, blood flow and mass transport in the cardiac muscle. International Journal of Heat and Mass Transfer, 37:191–205, 1994.

    Article  MATH  Google Scholar 

  39. A. J. Cornelissen, J. Dankelman, E. VanBavel, and J. A. Spaan. Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol, 282(6):H2224–37, 2002.

    Google Scholar 

  40. E. O. Feigl. Coronary physiology. Physiol Rev, 63(1):1–205, 1983.

    Google Scholar 

  41. O.B. Garfein. Current concepts in cardiovascular physiology. Academic Press, San Diego; London, 1990.

    Google Scholar 

  42. T. Komaru, H. Kanatsuka, and K. Shirato. Coronary microcirculation: physiology and pharmacology. Pharmacol Ther, 86(3):217–61, 2000.

    Article  Google Scholar 

  43. B. D. Seeley and D. F. Young. Effect of geometry on pressure losses across models of arterial stenoses. J Biomech, 9(7):439–48, 1976.

    Article  Google Scholar 

  44. B. Berthier, R. Bouzerar, and C. Legallais. Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. J Biomech, 35(10): 1347–56, 2002.

    Article  Google Scholar 

  45. V. Fuster. Atherothrombosis and coronary artery disease. Lippincott Williams & Wilkins, Philadelphia, 2nd edition, 2005.

    Google Scholar 

  46. B. Quatember and H. Mühlthaler. Generation of cfd meshes from biplane angiograms: an example of image-based mesh generation and simulation. Applied Numerical Mathematics, 46(3–4):379–97, 2003.

    Article  MATH  Google Scholar 

  47. E. Shalman, M. Rosenfeld, E. Dgany, and S. Einav. Numerical modeling of the flow in stenosed coronary artery. the relationship between main hemodynamic parameters. Comput Biol Med, 32(5):329–44, 2002.

    Article  Google Scholar 

  48. W. Zhang, Y. Liu, and G. S. Kassab. Flow-induced shear strain in intima of porcine coronary arteries. J Appl Physiol, 103(2):587–93, 2007.

    Article  Google Scholar 

  49. M. Schrijver and C. Slump. Automatic segmentation of the coronary artery tree in angiographic projections. Proceedings of BroRISC 2002, November 28–29, 2002, Veldhoven, cNetherlands, pages 449–464, 2002.

    Google Scholar 

  50. M. Mayr and B. Quatember. Segmentation of the coronary arteries in biplane angiograms based on a differential geometric approach. In F. Pistella and R. M. Spitaleri, editors, MASCOT05-5th Meeting on Applied Scientific Computing and Tools / Grid Generation, Approximation, Simulation and Visualization., volume 10 of IMACS Series in Computational and Applied Mathematics, pages 71–80, Lecce, Italy, 2005.

    Google Scholar 

  51. B. Quatember, M. Mayr, and H. Mühlthaler. Clinical usefulness of a computational grid for diagnosis and planning therapy of coronary artery disease. In J. Volkert, T. Fahringer, D. Kranzlmüller, and W. Schreiner, editors, 1st Austrian Grid Symposium, volume 210, pages 75–89, Schloss Hagenberg, Austria, 2006. Oesterreichische Computer Gesellschaft (books@ocg.at).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Quatember, B., Mayr, M. (2008). Mathematical Modelling and Simulation of Coronary Blood Flow. In: Hosking, R.J., Venturino, E. (eds) Aspects of Mathematical Modelling. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8591-0_9

Download citation

Publish with us

Policies and ethics