Skip to main content

Nutrient, Non-toxic Phytoplankton, Toxic Phytoplankton and Zooplankton Interaction in an Open Marine System

  • Chapter
Aspects of Mathematical Modelling

Abstract

In this paper we propose a mathematical model for the interaction of nutrient, non-toxic phytoplankton, toxic phytoplankton and their predator zooplankton population in an open marine system. For a realistic representation of the open marine plankton ecosystem, we have incorporated various natural phenomena such as spatial flow, nutrient recycling, toxin effects, inter-species competition and grazing at a higher level. Nutrient-phytoplankton-zooplankton interactions are observed to be very complex and situation specific. Different exciting results, ranging from stable situation to cyclic blooms or monospecies bloom, may occur under different favourable conditions, which may give some insights for predictive management.

Work of S. Pal is supported by: UGC MRP NO. F.PSW-063/05-06(ERO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. M. Toxic algae blooms and red tides: a global perspective. In: Red Tides: Biology, Environmental Science and Toxicology (T. Okaichi, D. M. Anderson and T. Nemoto, eds). Elsevier, New York. U.S.A., (1989), 11–21.

    Google Scholar 

  2. Anderson, D. M., Kaoru, Y., White, A. W. Estimated Annual Economic Impacts from Harmful Algal Blooms (HABs) in the United States. Sea Grant Woods Hole. (2000).

    Google Scholar 

  3. Beltrami, E. and Carroll, T. O. Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32 (1994), 857–863.

    Article  MATH  Google Scholar 

  4. Blaxter, J. H. S and Southward, A. J. Advances in Marine Biology. Academic Press, London. U.K., (1997).

    Google Scholar 

  5. Busenberg, S., Kishore, K.S., Austin, P. and Wake, G. The dynamics of a model of a plankton-nutrient interaction. J. Math. Biol. 52 (1990), 677–696.

    MATH  Google Scholar 

  6. Carlsson, P., Graneli, E., Finenko, G. and Maestrini, S. Y. Copepod grazing on a phytoplankton community containing the toxic dinoflagellate Dinophysis acuminata. J. Plankton Res. 17 (1995), 1925–1938.

    Article  Google Scholar 

  7. Chattopadhyay J., Sarkar R. R., Mandal S. Toxin producing plankton may act as a biological control for planktonic blooms-field study and mathematical modeling. J. Theor. Biol. 215 (2002), 333–344.

    Article  Google Scholar 

  8. DeAngelis, D. L. Dynamics of nutrient cycling and food webs. Chapman & Hall, London, (1992).

    Google Scholar 

  9. De Mott, W. R. and Moxter, F. Foraging on cyanobacteria by copepods: responses to chemical defenses and resource abundance. Ecology 72 (1991), 1820–1834.

    Article  Google Scholar 

  10. Duinker, J. and Wefer, G. Das CO 2-Problem und die Rolle des Ozeans. Naturwissenschahten 81 (1994), 237–242.

    Article  Google Scholar 

  11. Edwards, A. M. and Brindley, J. Zooplankton mortality and the dynamical behaviour of plankton population-models. Bull. Math. Biol. 61 (1999), 303–339.

    Article  Google Scholar 

  12. Evans, G. T. and Parslow, J. S. A model of annual plankton cycles. Biol. Oceanogr. 3 (1985), 327–427.

    Google Scholar 

  13. Evans, G. T. A framework for discussing seasonal succession and coexistence of phytoplankton species. Limnol. Oceanogr. 33 (1988), 1027–1036.

    Article  Google Scholar 

  14. Frost, B. W. Grazing control of phytoplankton stock in the open sub-arctic Pacific Ocean: A model assessing the role of mesozooplankton, particularly the large calanoid copepod neocalanus. Mar. Ecol. Ser. 39 (1987), 49–68.

    Article  Google Scholar 

  15. Hallegraeff G. M. A review of harmful algal blooms and the apparent global increase. Phycologia 32 (1993), 79–99.

    Google Scholar 

  16. Hansen, P. J. The red tide dinoflagellate Alexandrium tamarense: Effects on behaviour and growth of a tintinnid ciliate. Mar. Ecol. Prog. Ser. 53 (1989), 105–116.

    Article  Google Scholar 

  17. Hansen, P. J. Growth and grazing response of a ciliate feeding on the red tide dinoflagellate Gyrodinium aureolum in monoculture and in mixture with a non-toxic alga. Mar. Ecol. Prog. Ser. 121 (1995), 65–72.

    Article  Google Scholar 

  18. Huppert, A., Blasius, B. and Stone, L. Bottom-Up Excitable Models of Phytoplankton Blooms. Bull. Math. Biol. 66 (2004), 865–878.

    Article  MathSciNet  Google Scholar 

  19. Ives, J. D. The relationship between Gonyaulax tamarensis cell toxin levels and cope-pod ingestion rates. In Toxic dinoflagellates: Proc. 3rd Int. conf. Elsevier. (1985), 413–418.

    Google Scholar 

  20. Ives, J. D. Possible mechanism underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates. J. Exp. Mar. Biol. Ecol. 112 (1987), 131–145.

    Article  Google Scholar 

  21. Kamiyama, T. and Arima, S. Lethal effect of the dinoflagellate Heterocapsa circularisquama upon the tintinnid ciliate Favella taraikaensis. Mar. Ecol. Prog. Ser. 160 (1997), 27–33.

    Article  Google Scholar 

  22. Kirk K., Gilbert J. Variations in herbivore response to chemical defences: zooplankton foraging on toxic cyanobacteria. Ecology 73 (1992), 2208.

    Article  Google Scholar 

  23. Nagumo, N. Uber die Lage der Integralkurven gewonlicher Differantialgleichungen. Proc. Phys. Math. Soc. Japan 24 (1942), 551.

    MATH  MathSciNet  Google Scholar 

  24. Nielsen T. G. et al. Effects of Chrysochromulina polylepis subsurface bloom on the plankton community. Mar. Ecol. Prog. Ser. 62 (1990), 21–35.

    Article  Google Scholar 

  25. Nejstgaard, J. C. and Solberg, P. T. Repression of copepod feeding and fecundity by the toxic haptophyte Prymnesium patelliferum. Sarsia 81 (1996), 339–344.

    Google Scholar 

  26. Pal, S., Chatterjee, S., Chattopadhyay J. Role of toxin and nutrient for the occurrence and termination of plankton bloom — Results drawn from field observations and a mathematical model. Biosystems. 90 (2007), 87–100.

    Article  Google Scholar 

  27. Pitchford, J. W. and Brindley, J. Iron limitation, grazing pressure and oceanic high nutrient and low chlorophyll (HNLC) regions. J. Plank. Res. 21 (1999), 525–547.

    Article  Google Scholar 

  28. Pardo, O. Global stability for a phytoplankton-nutrient system. J. Biol. Syst. 8 (2000), 195–209.

    Google Scholar 

  29. Ruan, S. Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling. J. Math. Biol. 31 (1993), 633–654.

    Article  MATH  MathSciNet  Google Scholar 

  30. Ruan, S. Oscillations in Plankton Models with Nutrient Recycling. J. Theor. Biol. 208 (2001), 15–26.

    Article  Google Scholar 

  31. Sarno, Z. A. D. and Forlani, G. Seasonal dynamics in the abundance of Micromonus pusilla (Prasinophyceae) and its viruses in the Gulf of Naples (Mediterranean Sea). J. Plankton. Res. 21 (1999), 2143–2159.

    Article  Google Scholar 

  32. Smayda, T. J. and Villarea, T.A. The 1985 “brown-tide” and open phytoplankton niche in Narragansett Bay during summer P In E. M. Cosper et al. [eds.], novel phytoplankton blooms. causes and impacts of recurrent brown tides and other unusual blooms. Springer, (1989), 159–187.

    Google Scholar 

  33. Smayda, T. J. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Toxic Marine Phytoplankton (E. Graneli, B. Sundstrøm, L. Edler and D.M. Anderson, eds.), Elsevier, New York. U.S.A., (1990), 29–40.

    Google Scholar 

  34. Smith, H. L. Competitive coexistence in an oscillating chemostat. SIAM J. Appl. Math. 40 (1981), 498–522.

    Article  MATH  MathSciNet  Google Scholar 

  35. Stoermer, E.F. and Smol, J.P. In: The Diatoms Cambridge University Press, Cambridge. U.K., (1999).

    Google Scholar 

  36. Stone, L. and Berman, T. Positive feedback in aquatic ecosystems: the case of microbial loop. Bull. Math. Biol. 55 (1993), 919–936.

    MATH  Google Scholar 

  37. Sykes, P. F. and Huntley, M. E. Acute physiological reactions of Calanus pacificus: to selected dinoflagellates: Direct observations. Mar. Biol. 94 (1987), 19–24.

    Article  Google Scholar 

  38. Taylor, A. J. Characteristic properties of model for the vertical distribution of phytoplankton under stratification. Ecol. Model. 40 (1988), 175–199.

    Article  Google Scholar 

  39. Truscott, J.E. and Brindley, J. Ocean plankton populations as excitable media. Bull. Math. Biol. 56 (1994), 981–998.

    MATH  Google Scholar 

  40. Truscott, J. E. and Brindley, J. Equilibria, stability and excitability in a general class of plankton population-models. Philos. Trans. R. Soc. Lond. A 347 (1994), 703–718.

    Article  MATH  Google Scholar 

  41. Uye, S. Impact of copepod grazing on the red tide flagellate Chattonella antiqua. Mar. Biol. 92 (1986), 35.

    Article  Google Scholar 

  42. Wroblewski, J.S., Sarmiento, J.L. and Flierl, G.R. An ocean basin scale model of plankton dynamics in the North Atlantic, 1, Solutions for the climatological oceanographic condition in May. Global Biogeochem. Cycles 2 (1988), 199–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Bairagi, N., Pal, S., Chatterjee, S., Chattopadhyay, J. (2008). Nutrient, Non-toxic Phytoplankton, Toxic Phytoplankton and Zooplankton Interaction in an Open Marine System. In: Hosking, R.J., Venturino, E. (eds) Aspects of Mathematical Modelling. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8591-0_3

Download citation

Publish with us

Policies and ethics