Skip to main content

Exponential Convergence Analysis of DCNNs having Unbounded Activations and Inhibitory Self-Connections

  • Chapter
Aspects of Mathematical Modelling

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

  • 1249 Accesses

Abstract

We investigate the exponential convergence characteristics of an equilibrium state of a delayed cellular neural network (DCNN) whose state variables are governed by a system of nonlinear integrodifferential equations with delays distributed continuously over unbounded intervals. The network is designed in such a way that the self-connections are inhibitory and instantaneous, and the activation functions are globally Lipschitz continuous and they are not necessarily bounded and differentiable. While monotonicity is generally not required for the activation functions, it is however needed for the activations of the inhibitory and instantaneous self-connections. By applying a Young inequality to an appropriate form of Lyapunov functionals, we establish the exponential convergence of the network towards a unique equilibrium state under a set of easily verifiable and delay independent sufficient conditions. It is shown that the restriction holding between the neural parameter values can be relaxed by the presence of the inhibitory and instantaneous self-connections and the corresponding monotonically increasing activation functions. The global exponential stability results obtained in this article will improve and extend the existing results which have been published in the literature on neural networks.

Results in this paper were presented at the International Conference on Mathematical Modelling and Computation held at the University of Brunei Darussalam during 5–8 June 2006. in conjunction with the 20th anniversary celebration of the foundation of the university.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arik, An improved global stability result for delayed cellular neural networks, IEEE Trans. Circ. Syst.-I 49 (2002), 1211–1214.

    Article  MathSciNet  Google Scholar 

  2. G. Avitabile, M. Forti, S. Manetti, M. Marini, On a class of nonsymmetrical neural networks with application to ADC, IEEE Trans. Circuits Syst. 38 (1991), 202–209.

    Article  MATH  Google Scholar 

  3. E. F. Beckenbach, R. Bellman, Inequalities, Springer Verlag, New York, 1965.

    Google Scholar 

  4. J. Cao, New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. Lett. A 307 (2003), 136–147.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Cao, Global exponential stability and periodic solutions of delayed cellular neural networks, J. Comp. Syst. Sci. 60 (2000), 38–46.

    Article  MATH  Google Scholar 

  6. J. Cao, On exponential stability and periodic solutions of CNN’s with delays, Phys. Lett. A 267 (2000), 312–318.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Cao, Q. Li, On the exponential stability and periodic solutions of delayed cellular neural networks, J. Math. Anal. Appl. 252 (2000), 50–64.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Cao, Global stability analysis in delayed cellular neural networks, Phys. Rev. E 59 (1999), 5940–5944.

    Article  MathSciNet  Google Scholar 

  9. J. Cao, Periodic solutions and exponential stability in delayed cellular neural networks, Phys. Rev. E 60 (1999), 3244–3248.

    Article  MathSciNet  Google Scholar 

  10. J. Cao, On stability of delayed cellular neural networks, Phys. Lett. A 261 (1999), 303–308.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Cao, D. Zhou, Stability analysis of delayed cellular neural networks, Neural Networks 11 (1998), 1601–1605.

    Article  Google Scholar 

  12. A. Chen, J. Cao, L. Huang, Global robust stability of interval cellular neural networks with time-varying delays, Chaos Solitons Fractals 23 (2005), 787–799.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Chen, J. Cao, L. Huang, Periodic solution and global exponential stability for shunting inhibitory delayed cellular neural networks, Electr. J. Diff. Equ. 2004 (2004), 1–16.

    MathSciNet  Google Scholar 

  14. L. O. Chua, T. Roska, Stability of a class of nonreciprocal cellular neural networks, IEEE Trans. Circ. Syst. 37 (1990), 1520–1527.

    Article  Google Scholar 

  15. L. O. Chua, L. Yang, Cellular neural networks: Theory, IEEE Trans. Circ. Syst. 35 (1988), 1257–1272.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. O. Chua, L. Yang, Cellular neural networks: Applications, IEEE Trans Circ. Syst. 35 (1988), 1273–1290.

    Article  MathSciNet  Google Scholar 

  17. P. P. Civalleri, M. Gilli, L. Pandolfi, On stability of cellular neural networks with delay, IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 40 (1993), 157–165.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Forti, A. Tesi, New conditions for global stability of neural networks with application to linear and quadratic programming problems, IEEE Trans. Circuits Syst. I: Fund. Theor. Appl. 42 (1995), 354–366.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Forti, On global asymptotic stability of a class of nonlinear systems arising in neural network theory, J. Diff. Equ. 113 (1994), 246–264.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Forti, S. Manetti, M. Marini, Necessary and sufficient condition for absolute stability of neural networks, IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 41 (1994), 491–494.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Forti, S. Manetti, M. Marini, A condition for global convergence of a class of symmetric neural circuits, IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 39 (1992), 480–483.

    Article  MATH  Google Scholar 

  22. C. J. Fu, A sufficient condition for exponential stability of cellular neural networks with time-varying delays, J. Math. (Wuhan) 22 (2002), 266–270.

    MATH  Google Scholar 

  23. M. Gilli, Stability of cellular neural networks and delayed cellular neural networks with nonpositive templates and nonmonotonic output functions, IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 41 (1994), 518–528.

    Article  MathSciNet  Google Scholar 

  24. K. Gopalsamy, Stability of artificial neural networks with impulses, Appl. Math. Computat. 154 (2004), 783–813.

    Article  MATH  MathSciNet  Google Scholar 

  25. K. Gopalsamy, X. Z. He, Stability in asymmetric Hopfield nets with transmission delays, Phys. D 76 (1994), 344–358.

    Article  MATH  MathSciNet  Google Scholar 

  26. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Press, The Netherlands, 1992.

    MATH  Google Scholar 

  27. C. Guzelis, L. O. Chua, Stability analysis of generalised cellular neural networks, Int. J. Circuit Theor. Appl. 21 (1993), 1–33.

    Article  MATH  Google Scholar 

  28. T. Lara, P. Ecimovciz, J. Wu, Delayed cellular neural networks: model, applications, implementations, and dynamics, Diff. Equ. Dynam. Systems 10 (2002), 71–97.

    MATH  MathSciNet  Google Scholar 

  29. X. Li, L. Huang, Exponential stability and global stability of cellular neural networks, Appl. Math. Computat. 147 (2004), 843–853.

    Article  MATH  MathSciNet  Google Scholar 

  30. X. M. Li, L. H. Huang, H. Zhu, Global stability of cellular neural networks with constant and variable delays, Nonlin. Anal. 53 (2003), 319–333.

    Article  MATH  MathSciNet  Google Scholar 

  31. X.X. Liao, J. Wang, Algebraic criteria for global exponential stability of cellular neural networks with multiple time delays, IEEE Trans. Circuits Systems I Fund. Theory Appl. 50 (2003), 268–275.

    Article  MathSciNet  Google Scholar 

  32. X. Liao, Z. Wu, J. Yu, Stability analyses of cellular neural networks with continuous time delay, J. Computat. Appl. Math. 143 (2002), 29–47.

    Article  MATH  MathSciNet  Google Scholar 

  33. D. Liu, A. N. Michel, Cellular neural networks for associative memories, IEEE Trans. Circ. Syst. II: Analog Dig. Sig. Proc. 40 (1993), 119–121.

    Article  MATH  Google Scholar 

  34. Z. Liu, L. Liao, Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. Math. Anal. Appl. 290 (2004), 247–262.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Mohamad, Convergence dynamics of delayed Hopfield-type neural networks under almost periodic stimuli, Acta Appl. Math. 76 (2003), 117–135.

    Article  MATH  MathSciNet  Google Scholar 

  36. S. Mohamad, Global exponential stability in discrete-time analogues of delayed cellular neural networks, J. Differ. Equ. Appl. 9 (2003), 559–575.

    Article  MATH  MathSciNet  Google Scholar 

  37. S. Mohamad, K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with discrete delays, Appl. Math. Computat. 135 (2003), 17–38.

    Article  MATH  MathSciNet  Google Scholar 

  38. S. Mohamad, K. Gopalsamy, Dynamics of a class of discrete-time neural networks and their continuous-time counterparts, Math. Comput. Simul. 53 (2000), 1–39.

    Article  MathSciNet  Google Scholar 

  39. T. Roska, L. Chua, D. Wolf, T. Kozek, R. Tetzlaff, F. Puffer, Simulating nonlinear waves and PDEs via CNN — Part I: Basic Techniques, Part II: Typical examples, IEEE Trans. Circuits Systems-I 42 (1995), 809–820.

    Google Scholar 

  40. T. Roska, W. Chai, L. Chua, Stability of CNN with dominant nonlinear and delay-type templates, IEEE Trans. Circuits Systems-I 40 (1993), 270–272.

    Article  MATH  Google Scholar 

  41. T. Roska, L. O. Chua, Cellular neural networks with nonlinear and delay-type template elements, Int. J. Circuit Theory Appl. 20 (1992), 469–481.

    Article  MATH  Google Scholar 

  42. T. Sasagawa, Sufficient condition for the exponential p-stability and p-stabilizability of linear stochastic systems, Int. J. Syst. Sci. 13 (1982), 399–408.

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Slavova, Cellular neural network models of some equations from Biology, Physics and Ecology, Funct. Diff. Equ. 10 (2003), 579–591.

    MATH  MathSciNet  Google Scholar 

  44. A. Slavova, Applications of some mathematical methods in the analysis of cellular neural networks, J. Computat. Appl. Math. 114 (2000), 387–404.

    Article  MATH  MathSciNet  Google Scholar 

  45. N. Takahashi, L. O. Chua, On the complete stability of nonsymmetric cellular neural networks, IEEE Trans. Circuits Syst. I: Fund. Theor. Appl. 45 (1998), 754–758.

    Article  MATH  MathSciNet  Google Scholar 

  46. N. Takahashi, L. O. Chua, A new sufficient condition for nonsymmetric CNN’s to have a stable equilibrium point, IEEE Trans. Circuits Syst. I: Fund. Theor. Appl. 44 (1997), 1092–1095.

    Article  MathSciNet  Google Scholar 

  47. D. W. Tank, J. J. Hopfield, Neural computation by concentrating information in time, Proc. Natl. Acad. Sci. USA 84 (1987), 1896–1990.

    Article  MathSciNet  Google Scholar 

  48. H. Xie, Q. Wang, The existence of almost periodic solution for cellular neural networks with variable coefficients and delays, Ann. Diff. Equ. 21 (2005), 65–72.

    MATH  MathSciNet  Google Scholar 

  49. H. Yanai, S. Amari, Auto-associative memory with two-stage dynamics of nonmonotonic neurons, IEEE Trans. Neural Networks 7 (1996), 803–815.

    Article  Google Scholar 

  50. S. Yoshizawa, M. Morita, S. I. Amari, Capacity of associative memory using a nonmonotonic neuron model, Neural Networks 6 (1993), 167–176.

    Article  Google Scholar 

  51. J. Zhang, Absolute stability analysis in cellular neural networks with variable delays and unbounded delay, Comp. Math. Appl. 47 (2004) 183–194.

    Article  MATH  Google Scholar 

  52. Q. Zhang, X. Wei, J. Xu, New stability conditions for neural networks with constant and variable delays, Chaos Solitons Fractals 26 (2005), 1391–1398.

    Article  MATH  MathSciNet  Google Scholar 

  53. Q. Zhang, X. Wei, J. Xu, On global exponential stability of nonautonomous delayed neural networks, Chaos Solitons Fractals 26 (2005), 965–970.

    Article  MATH  MathSciNet  Google Scholar 

  54. Q. Zhang, X. Wei, J. Xu, Delay-dependent exponential stability of cellular neural networks with time-varying delays, Chaos Solitons Fractals 23 (2005) 1363–1369.

    MATH  MathSciNet  Google Scholar 

  55. H. Zhao, Existence and global attractivity of almost periodic solution for cellular neural network with distributed delays, Appl. Math. Computat. 154 (2004), 683–695.

    Article  MATH  Google Scholar 

  56. D. Zhou, L. Zhang, J. Cao, On global exponential stability of cellular neural networks with Lipschitz-continuous activation function and variable delays, Appl. Math. Comput. 151 (2004), 379–392.

    Article  MATH  MathSciNet  Google Scholar 

  57. D. Zhou, J. Cao, Globally exponential stability conditions for cellular neural networks with time-varying delays, Appl. Math. Computat. 131 (2002), 487–496.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Mohamad, S. (2008). Exponential Convergence Analysis of DCNNs having Unbounded Activations and Inhibitory Self-Connections. In: Hosking, R.J., Venturino, E. (eds) Aspects of Mathematical Modelling. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8591-0_14

Download citation

Publish with us

Policies and ethics